基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对早期的滤波方法,如线性的有高斯滤波、均值滤波、方框滤波等和非线性的如中值滤波、开闭运算等传统滤波方法是在像素级进行行列式的循环运算,运算繁琐,数据亢余和不能有效压缩图像进行数字化传播的缺点,提出一种基于PCA主成分图像融合后的K-SVD滤波方法的研究,有效弥补了单一K-SVD对椒盐噪声起不到良好滤波的缺点。首先对源图像进行多次的观测得到N幅含噪图像(既含有高斯噪声也含有椒盐噪声,都是加性噪声)。再对N幅含噪图像进行PCA主成分提取融合后进行K-SVD滤波(如果先进行K-SVD滤波的话会造成多幅图像的K-SVD的滤波,导致效率低且运算度冗余N倍)。这样有效消除了高斯噪声的干扰,还解决了K-SVD对椒盐噪声不敏感的缺陷,完成了在图像特征级数据去噪的研究。
推荐文章
基于K-SVD超声渡越时间获取方法研究
稀疏表示
完备字典
超声检测
正交匹配追踪
K-SVD
基于稀疏 K-SVD 字典的图像融合方法
稀疏K-SVD
解析字典
学习字典
图像融合
基于K-SVD超声渡越时间获取方法研究
稀疏表示
完备字典
超声检测
正交匹配追踪
K-SVD
基于K-SVD的协同入侵检测
稀疏表示
奇异值分解
支持向量机
协同
入侵检测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 PCA与K-SVD联合滤波方法的研究
来源期刊 光电技术应用 学科 工学
关键词 PCA融合 K-SVD滤波 特征级图像去噪
年,卷(期) 2016,(4) 所属期刊栏目 信号与信息处理
研究方向 页码范围 31-36,45
页数 7页 分类号 TP391.4
字数 3953字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 秦丽娟 沈阳理工大学信息科学与工程学院 21 91 4.0 8.0
2 谷雨 沈阳理工大学信息科学与工程学院 1 2 1.0 1.0
3 蒋磊磊 沈阳理工大学信息科学与工程学院 2 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (9)
共引文献  (21)
参考文献  (7)
节点文献
引证文献  (2)
同被引文献  (4)
二级引证文献  (0)
1960(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(2)
  • 参考文献(2)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
PCA融合
K-SVD滤波
特征级图像去噪
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
光电技术应用
双月刊
1673-1255
12-1444/TN
大16开
天津市空港经济区纬五道9号
1982
chi
出版文献量(篇)
2224
总下载数(次)
8
总被引数(次)
9885
论文1v1指导