基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
稀疏字典学习是一种功能强大的视频图像稀疏表示方法,在稀疏信号处理领域引起了广泛关注.K-SVD算法在稀疏表示技术上取得了巨大成功,但遇到了字典原子未充分利用的问题,而稀疏贝叶斯字典学习(Sparse Bayesian Dictiona-ry Learning,SBDL)算法存在稀疏表示后信号原子不稀疏和不收敛的缺点.广义贝叶斯字典学习(Generalized Bayesian Dic-tionary Learning,GBDL)K-SVD算法提供了一种新型稀疏表示系数更新模式,使得过完备字典稀疏学习算法逐步收敛的同时训练向量足够稀疏.仿真结果表明,对有损像素和压缩传感这两种视频图像帧进行稀疏化,GBDL K-SVD算法表示的视频图像帧的重构效果与SBDL K-SVD算法相比有明显的提高.
推荐文章
基于稀疏 K-SVD 字典的图像融合方法
稀疏K-SVD
解析字典
学习字典
图像融合
基于K-SVD超声渡越时间获取方法研究
稀疏表示
完备字典
超声检测
正交匹配追踪
K-SVD
基于自适应K-SVD字典的视频帧稀疏重建算法
K-SVD算法
自适应K-SVD算法
字典学习
稀疏表示
压缩感知
基于竞争聚集的K-SVD字典学习算法
稀疏表示
字典学习
聚类
竞争聚集
K-SVD算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 广义贝叶斯字典学习K-SVD稀疏表示算法
来源期刊 计算机技术与发展 学科 工学
关键词 稀疏贝叶斯学习 视频图像稀疏表示 字典学习 K-SVD算法
年,卷(期) 2016,(5) 所属期刊栏目 智能、算法、系统工程
研究方向 页码范围 71-75
页数 5页 分类号 TP301.6
字数 4688字 语种 中文
DOI 10.3969/j.issn.1673-629X.2016.05.015
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李雷 南京邮电大学理学院 82 539 12.0 18.0
2 周飞飞 南京邮电大学理学院 4 15 3.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (10)
共引文献  (1)
参考文献  (12)
节点文献
引证文献  (4)
同被引文献  (4)
二级引证文献  (1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(4)
  • 参考文献(2)
  • 二级参考文献(2)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(5)
  • 参考文献(3)
  • 二级参考文献(2)
2012(4)
  • 参考文献(1)
  • 二级参考文献(3)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(3)
  • 参考文献(3)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
稀疏贝叶斯学习
视频图像稀疏表示
字典学习
K-SVD算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导