基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为解决传统关联规则挖掘算法在大数据环境下运行效率较低的问题,基于频繁模式增长(FP-growth)算法,提出一种面向大数据的并行关联规则增量更新算法.利用MapReduce编程模型与云计算平台,对FP-growth算法各步骤进行并行化处理.在增量更新挖掘过程中,使用已有的频繁项集和1-项集对新增事务集构建频繁模式树,通过扫描原始事务数据库完成频繁项集的更新.实验结果表明,与传统关联规则挖掘算法相比,该算法具有更高的挖掘效率和扩展性,适用于海量数据的关联规则增量挖掘.
推荐文章
基于MapReduce的关联规则并行增量更新算法
关联规则
大数据
增量更新
MapReduce
快速更新频繁模式树(FUFP-tree)
基于MapReduce的关联规则增量更新算法
海量数据挖掘
云计算
映射/规约
关联规则
增量更新
基于MapReduce计算模型的并行关联规则挖掘算法研究综述
数据挖掘
关联规则挖掘
频繁项集
并行
MapReduce
Hadoop
一种有效的关联规则增量更新算法
关联规则
增量更新
商品概念层次
频繁项/维集
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于MapReduce的并行关联规则增量更新算法
来源期刊 计算机工程 学科 工学
关键词 大数据 云计算 MapReduce编程模型 频繁项集 增量更新 关联规则
年,卷(期) 2016,(2) 所属期刊栏目 云计算专题
研究方向 页码范围 21-25,32
页数 6页 分类号 TP311
字数 5781字 语种 中文
DOI 10.3969/j.issn.1000-3428.2016.02.004
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王晓峰 上海海事大学信息工程学院 71 454 12.0 17.0
2 程广 上海海事大学信息工程学院 1 18 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (15)
共引文献  (1679)
参考文献  (5)
节点文献
引证文献  (18)
同被引文献  (60)
二级引证文献  (14)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2016(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(4)
  • 引证文献(4)
  • 二级引证文献(0)
2018(6)
  • 引证文献(5)
  • 二级引证文献(1)
2019(12)
  • 引证文献(5)
  • 二级引证文献(7)
2020(8)
  • 引证文献(2)
  • 二级引证文献(6)
研究主题发展历程
节点文献
大数据
云计算
MapReduce编程模型
频繁项集
增量更新
关联规则
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程
月刊
1000-3428
31-1289/TP
大16开
上海市桂林路418号
4-310
1975
chi
出版文献量(篇)
31987
总下载数(次)
53
总被引数(次)
317027
论文1v1指导