基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统的基于频繁模式增长的并行关联规则算法在处理动态更新的数据集时,需要把更新后的数据集全部压缩到频繁模式树中,消耗了大量时间和存储空间,且没有充分考虑头表分组过程中组间负载量不同的问题.针对在关联规则的实际挖掘过程中,数据集快速增长所造成的增量更新问题,基于并行频繁模式增长PFP-tree算法,结合Spark分布式并行处理框架,提出一种改进的并行关联规则增量更新算法.在增量更新过程中,为了减少挖掘时间和存储空间,利用已有挖掘结果对新增数据集构建频繁模式树.通过改进头表分组策略,实现了并行挖掘节点之间的负载均衡.实验分析表明,相较于传统的关联增量更新算法,该算法是可行的且具备较高的挖掘效率和可扩展性,适用于动态增长的大数据环境.
推荐文章
一种有效的关联规则增量更新算法
关联规则
增量更新
商品概念层次
频繁项/维集
一种新的增量更新多层关联规则算法研究
关联规则
数据挖掘
概念层次树
一种高效维护关联规则的增量算法
数据挖掘
关联规则
维护
增量更新
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种改进的并行关联规则增量更新算法研究
来源期刊 计算机技术与发展 学科 工学
关键词 Spark 关联规则 增量更新 并行计算 FP-tree
年,卷(期) 2018,(7) 所属期刊栏目 智能、算法、系统工程
研究方向 页码范围 48-52
页数 5页 分类号 TP311
字数 5401字 语种 中文
DOI 10.3969/j.issn.1673-629X.2018.07.011
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王诚 南京邮电大学通信与信息工程学院 34 123 6.0 9.0
2 赵申屹 南京邮电大学通信与信息工程学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (69)
共引文献  (56)
参考文献  (12)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(8)
  • 参考文献(0)
  • 二级参考文献(8)
2011(7)
  • 参考文献(0)
  • 二级参考文献(7)
2012(16)
  • 参考文献(1)
  • 二级参考文献(15)
2013(8)
  • 参考文献(0)
  • 二级参考文献(8)
2014(8)
  • 参考文献(3)
  • 二级参考文献(5)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(6)
  • 参考文献(5)
  • 二级参考文献(1)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Spark
关联规则
增量更新
并行计算
FP-tree
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导