基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出了一种基于多模态的卷积神经网络对脑部CT血管造影图像(CTA)进行分割,从而实现脑血管的单独提取。该方法首先对原始CTA图像进行高斯和拉普拉斯处理,并将处理后的图像与原始图像共同构成多模态图像作为输入,然后通过多个并行的卷积神经网络对多模态图像进行分割,最终将所有的分割结果通过线性回归进行融合从而提取出脑血管。该文通过一系列的实验不仅证明了卷积神经网络在脑血管分割上的有效性,而且证明了本文所提出方法的分割效果比现有的脑血管分割算法更加出色。
推荐文章
基于卷积神经网络的架空铁塔护坡提取
架空铁塔护坡
卷积神经网络
目标检测
语义分割
基于多尺度池化卷积神经网络的疲劳检测方法研究
视觉特征分析
多尺度池化
卷积神经网络
疲劳检测
人脸检测
基于卷积神经网络的植物图像分类方法研究
卷积神经网络
图像特征
图像分类
全卷积网络
植物图像
数据集
多尺度卷积循环神经网络的情感分类技术
文本情感分类
卷积神经网络
循环神经网络
长短时记忆
多尺度
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多模态卷积神经网络的脑血管提取方法研究
来源期刊 电子科技大学学报 学科 工学
关键词 脑血管分割 血管造影图像 卷积神经网络 多模态
年,卷(期) 2016,(4) 所属期刊栏目
研究方向 页码范围 573-581
页数 9页 分类号 TP315.69|TP181
字数 8018字 语种 中文
DOI 10.3969/j.issn.1001-0548.2016.04.010
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 秦志光 电子科技大学信息与软件工程学院 262 3157 26.0 46.0
2 蓝天 电子科技大学信息与软件工程学院 15 67 5.0 7.0
3 陈浩 电子科技大学信息与软件工程学院 16 58 5.0 7.0
4 丁熠 电子科技大学信息与软件工程学院 10 46 3.0 6.0
5 陈圆 电子科技大学信息与软件工程学院 1 15 1.0 1.0
6 沈广宇 电子科技大学信息与软件工程学院 1 15 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (17)
节点文献
引证文献  (15)
同被引文献  (37)
二级引证文献  (1)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(2)
  • 参考文献(2)
  • 二级参考文献(0)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(5)
  • 引证文献(5)
  • 二级引证文献(0)
2018(5)
  • 引证文献(5)
  • 二级引证文献(0)
2019(4)
  • 引证文献(4)
  • 二级引证文献(0)
2020(2)
  • 引证文献(1)
  • 二级引证文献(1)
研究主题发展历程
节点文献
脑血管分割
血管造影图像
卷积神经网络
多模态
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子科技大学学报
双月刊
1001-0548
51-1207/T
大16开
成都市成华区建设北路二段四号
62-34
1959
chi
出版文献量(篇)
4185
总下载数(次)
13
总被引数(次)
36111
论文1v1指导