基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
稀有类检测的目标是为无类别标签的数据集中的每个类,特别是仅含少量数据样本的稀有类,寻找到至少一个数据样本以证明数据集中存在这些类.该技术在金融欺诈检测及网络入侵检测等现实问题中具有广泛的应用场景.但是,现有的稀有类检测算法往往存在以下问题:(1)时间复杂度比较高;或(2)对原始数据集需要一定的先验知识,如数据集中各类数据样本所占比例等.提出了一种基于k邻近图的无先验快速稀有类检测算法KRED,通过利用稀有类数据样本在小范围内紧密分布所造成的与周边数据分布的不一致性来定位稀有类.为此,KRED将给定数据集转化为k邻近图,并计算图中各顶点入度和边长的变化.最后,将以上变化最大的顶点对应的数据样本作为稀有类的候选样本.实验结果表明:KRED有效提高了发现数据集中各个类的效率,明显缩短了算法运行所需时间.
推荐文章
基于K-近邻树的离群检测算法
离群检测
离群簇
最小生成树
不相似性
K-近邻
一种基于聚类的异常流量检测算法
异常检测
Chameleon算法
异常流量
聚类
基于共享最近邻的离群检测算法
共享最近邻
离群检测
任意形状簇
混合属性
一种改进的基于密度聚类的入侵检测算法
入侵检测
密度聚类
数据挖掘
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于k近邻图的稀有类检测算法
来源期刊 软件学报 学科 工学
关键词 稀有类检测 k邻近图 数据分布 变化系数 入度
年,卷(期) 2016,(9) 所属期刊栏目 数据库技术
研究方向 页码范围 2320-2331
页数 12页 分类号 TP311
字数 9350字 语种 中文
DOI 10.13328/j.cnki.jos.004872
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 黄浩 武汉大学计算机学院 22 283 9.0 16.0
2 孙月明 武汉大学计算机学院 2 0 0.0 0.0
3 余果 3 19 1.0 3.0
4 王黎维 武汉大学国际软件学院 10 67 5.0 8.0
5 王淞 武汉大学计算机学院 2 0 0.0 0.0
6 梁楠 武汉大学计算机学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (5)
共引文献  (4)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
稀有类检测
k邻近图
数据分布
变化系数
入度
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件学报
月刊
1000-9825
11-2560/TP
16开
北京8718信箱
82-367
1990
chi
出版文献量(篇)
5820
总下载数(次)
36
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导