基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对标准粒子群优化(PSO)算法早熟收敛及易陷入局部极值的缺点,提出一种基于环形邻域的混沌粒子群优化算法RCPSO,并将其应用于求解数据聚类问题,而且通过在4个数据集上进行仿真实验验证了算法的有效性。实验表明,当邻域大小为整个种群规模的1/3时,基于静态邻域和基于随机邻域的算法在4个数据集上的整体聚类效果均达到最好。RCPSO算法利用适当规模的环形邻域提高了粒子群的全局寻优能力,并利用混沌因子增强了粒子收敛过程中种群的多样性,从而避免算法的早熟收敛。另外,与K-means、PSO、K-PSO及CPSO算法的实验结果进行比较表明,RCPSO算法在错误率方面表现得更好,因此该算法为聚类问题提供了一种切实有效的解决方法。
推荐文章
粒子群聚类算法综述
聚类分析
群智能
粒子群优化算法
基于改进的简化粒子群聚类算法
简化粒子群算法
粒密度
最大距离积法
随机分布
极值扰动算子
K-means算法
基于SNP系统的改进粒子群聚类算法
聚类
K-means算法
PSO算法
脉冲神经膜系统
基于粒子群聚类算法的模糊神经网络建模方法研究
模糊神经网络
粒子群聚类算法
规则提取
建模
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于环形邻域的混沌粒子群聚类算法
来源期刊 计算机工程与应用 学科 工学
关键词 数据聚类 粒子群优化 混沌映射 环形邻域
年,卷(期) 2016,(2) 所属期刊栏目 理论与研发
研究方向 页码范围 54-60
页数 7页 分类号 TP301.6
字数 5841字 语种 中文
DOI 10.3778/j.issn.1002-8331.1410-0126
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 鲁海燕 江南大学理学院 22 188 8.0 13.0
2 徐向平 江南大学理学院 4 58 4.0 4.0
3 徐迅 江南大学理学院 2 13 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (28)
共引文献  (105)
参考文献  (16)
节点文献
引证文献  (6)
同被引文献  (41)
二级引证文献  (34)
1982(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(6)
  • 参考文献(2)
  • 二级参考文献(4)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(4)
  • 参考文献(1)
  • 二级参考文献(3)
2008(3)
  • 参考文献(2)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(7)
  • 参考文献(3)
  • 二级参考文献(4)
2011(4)
  • 参考文献(1)
  • 二级参考文献(3)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(6)
  • 引证文献(2)
  • 二级引证文献(4)
2018(17)
  • 引证文献(2)
  • 二级引证文献(15)
2019(9)
  • 引证文献(0)
  • 二级引证文献(9)
2020(7)
  • 引证文献(1)
  • 二级引证文献(6)
研究主题发展历程
节点文献
数据聚类
粒子群优化
混沌映射
环形邻域
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导