基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
尽管传统的词袋(BoW,bag of words)模型在复杂场景行为识别中能够保持鲁棒性,但是硬向量量化会导致大量的近似误差,进而产生很差的特征集.行为识别中一个重要的挑战是视觉词汇的构造,从原始特征到分类标签没有直接的映射,因此高层的视觉描述子需要更加精确的词典,故提出基于结构稀疏表示的人体行为识别方法.在所提出方法的BoW模型中,视频表示为组稀疏编码系数的直方图.与传统的BoW模型相比,所提方法具有更少的量化误差,而且高层特征表示可以减少模型参数和存储复杂性,并在标准化的人体行为数据集上评价所提方法,数据集包括KTH,Weimann,UCF-Sports,UCF50人体行为数据集,实验结果表明,所提方法与现存的其他方法相比各方面性能都有显著的提高.
推荐文章
基于改进隐马尔科夫模型的鲁棒用户行为识别
隐马尔科夫模型
遗传算法
Baum-Welch算法
用户行为识别
基于双流卷积神经网络的改进人体行为识别算法
人体行为识别
深度学习
双流卷积神经网络
模型融合
基于Bow-tie模型的大件运输事故风险分析
大件运输
事故
Bow-tie
屏障
故障树分析
基于改进BOW模型的图像分类技术
图像分类
BOW模型
MFI
Topology
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进BoW模型的行为识别
来源期刊 测控技术 学科 工学
关键词 人体行为识别 无监督特征学习 结构稀疏性 组稀疏编码 线性SVM
年,卷(期) 2016,(12) 所属期刊栏目 数据采集与处理
研究方向 页码范围 1-6
页数 6页 分类号 TP391
字数 5313字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 宋运忠 河南理工大学电气工程与自动化学院 49 229 9.0 13.0
2 杨丽英 河南理工大学电气工程与自动化学院 2 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (16)
共引文献  (2)
参考文献  (15)
节点文献
引证文献  (3)
同被引文献  (0)
二级引证文献  (0)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(5)
  • 参考文献(3)
  • 二级参考文献(2)
2011(5)
  • 参考文献(2)
  • 二级参考文献(3)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(5)
  • 参考文献(3)
  • 二级参考文献(2)
2014(6)
  • 参考文献(0)
  • 二级参考文献(6)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
人体行为识别
无监督特征学习
结构稀疏性
组稀疏编码
线性SVM
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
测控技术
月刊
1000-8829
11-1764/TB
大16开
北京2351信箱《测控技术》杂志社
82-533
1980
chi
出版文献量(篇)
8430
总下载数(次)
24
总被引数(次)
55628
论文1v1指导