作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对实木地板的图像获取过程中,所产生的噪声问题,引入了K-SVD字典的学习算法,提出了一种图像的有用信息稀疏分解去噪的方法,目的是有效的保留实木地板的有用纹理信息,并抑制其中掺杂的噪声.通过对图像稀疏分解后得到的值,来进行图像重构,就可以达到图像的去噪目的.首先,构造一个初始化的DCT字典,对图像分块处理;接着,在这个初始化字典的基础之上,进行纹理信息的稀疏分解,同时,对它们之间的残差值进行奇异值分解,更新字典;最后,利用得出的最优化字典,采用正交匹配重构算法,完成去噪图像的重建.实验表明,该算法得出的图像主观效果好,减少了去噪后的模糊程度及保留更多细节信息,在不同程度的噪声下,PSNR较高.
推荐文章
基于稀疏 K-SVD 字典的图像融合方法
稀疏K-SVD
解析字典
学习字典
图像融合
基于字典学习的图像稀疏去噪算法
稀疏字典
K-SVD算法
字典学习
稀疏去噪
基于K-SVD超声渡越时间获取方法研究
稀疏表示
完备字典
超声检测
正交匹配追踪
K-SVD
基于块分类和字典优化的K-SVD图像去噪研究
图像去噪
稀疏表示
K-SVD算法
图像块分类
过完备字典
字典优化
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于K-SVD字典稀疏分解的实木地板去噪方法
来源期刊 数码世界 学科
关键词 实木地板 图像去噪 K-SVD DCT字典 稀疏分解
年,卷(期) 2016,(6) 所属期刊栏目 技术交流
研究方向 页码范围 61-62
页数 2页 分类号
字数 2244字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李昶 东北林业大学机电工程学院 3 7 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (109)
共引文献  (132)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(3)
  • 参考文献(0)
  • 二级参考文献(3)
1993(3)
  • 参考文献(0)
  • 二级参考文献(3)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(4)
  • 参考文献(0)
  • 二级参考文献(4)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(14)
  • 参考文献(1)
  • 二级参考文献(13)
2007(14)
  • 参考文献(0)
  • 二级参考文献(14)
2008(13)
  • 参考文献(0)
  • 二级参考文献(13)
2009(11)
  • 参考文献(2)
  • 二级参考文献(9)
2010(10)
  • 参考文献(1)
  • 二级参考文献(9)
2011(4)
  • 参考文献(2)
  • 二级参考文献(2)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
实木地板
图像去噪
K-SVD
DCT字典
稀疏分解
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数码世界
月刊
1671-8313
12-1344/TP
大16开
北京市海淀区永定路4号A院3号楼506室
6-167
2002
chi
出版文献量(篇)
22805
总下载数(次)
112
总被引数(次)
4543
论文1v1指导