原文服务方: 计算机应用研究       
摘要:
针对 L1范数多核学习方法产生核权重的稀疏解时可能会导致有用信息的丢失和泛化性能退化、Lp 范数多核学习方法产生核权重的非稀疏解时会产生很多冗余信息并对噪声敏感,提出了一种通用稀疏多核学习方法。该算法是基于 L1范数和 Lp 范数(p >1)混合的网状正则化多核学习方法,不仅能灵活地调整稀疏性,而且鼓励核权重的组效应,L1范数和 Lp 范数多核学习方法可以认为是该方法的特例。该方法引进的混合约束为非线性约束,对此约束采用二阶泰勒展开式近似,并使用半无限规划来求解该优化问题。实验结果表明,改进后的方法在动态调整稀疏性的前提下能获得较好的分类性能,同时也支持组效应,从而验证了改进后的方法是有效可行的。
推荐文章
基于 Boosting框架的非稀疏多核学习方法
集成学习
非稀疏多核学习
弱分类器
基本核
一种基于稀疏矩阵的多核并行扰码方法
稀疏矩阵
多核
并行扰码
运算量
基于 Boosting框架的非稀疏多核学习方法
集成学习
非稀疏多核学习
弱分类器
基本核
基于局部空间变稀疏约束的多核学习方法
多核学习
支持向量机
局部学习
变稀疏约束
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 通用稀疏多核学习
来源期刊 计算机应用研究 学科
关键词 多核学习方法 稀疏性 组效应 分类
年,卷(期) 2016,(1) 所属期刊栏目 算法研究探讨
研究方向 页码范围 21-27
页数 7页 分类号 TP181
字数 语种 中文
DOI 10.3969/j.issn.1001-3695.2016.01.005
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴小俊 江南大学物联网工程学院 170 1079 17.0 22.0
2 陈素根 江南大学物联网工程学院 32 101 6.0 9.0
4 张仁峰 江南大学物联网工程学院 1 5 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (39)
共引文献  (15)
参考文献  (10)
节点文献
引证文献  (5)
同被引文献  (6)
二级引证文献  (3)
1971(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(9)
  • 参考文献(0)
  • 二级参考文献(9)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(7)
  • 参考文献(1)
  • 二级参考文献(6)
2006(8)
  • 参考文献(3)
  • 二级参考文献(5)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(4)
  • 引证文献(2)
  • 二级引证文献(2)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
多核学习方法
稀疏性
组效应
分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导