原文服务方: 计算机应用研究       
摘要:
针对传统的分类器集成的每次迭代通常是将单个最优个体分类器集成到强分类器中,而其他可能有辅助作用的个体分类器被简单抛弃的问题,提出了一种基于Boosting框架的非稀疏多核学习方法MKL-Boost。利用分类器集成学习的思想,每次迭代时,首先从训练集中选取一个训练子集,然后利用正则化非稀疏多核学习方法训练最优个体分类器,求得的个体分类器考虑了M个基本核的最优非稀疏线性凸组合,通过对核组合系数施加LP范数约束,一些好的核得以保留,从而保留了更多的有用特征信息,差的核将会被去掉,保证了有选择性的核融合,再将基于核组合的最优个体分类器集成到强分类器中。提出的算法既具有Boosting集成学习的优点,同时具有正则化非稀疏多核学习的优点,实验表明,相对于其他Boosting算法,MKL-Boost可以在较少的迭代次数内获得较高的分类精度。
推荐文章
通用稀疏多核学习
多核学习方法
稀疏性
组效应
分类
基于局部空间变稀疏约束的多核学习方法
多核学习
支持向量机
局部学习
变稀疏约束
基于多核学习方法的前瞻性记忆脑电识别
前瞻性记忆
样本熵
近似熵
AR系数
多核学习方法
通用稀疏多核学习
多核学习方法
稀疏性
组效应
分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于 Boosting框架的非稀疏多核学习方法
来源期刊 计算机应用研究 学科
关键词 集成学习 非稀疏多核学习 弱分类器 基本核
年,卷(期) 2016,(11) 所属期刊栏目 算法研究探讨
研究方向 页码范围 3219-3222,3227
页数 5页 分类号 TP181
字数 语种 中文
DOI 10.3969/j.issn.1001--3695.2016.11.005
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (55)
共引文献  (158)
参考文献  (8)
节点文献
引证文献  (4)
同被引文献  (0)
二级引证文献  (0)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(2)
  • 参考文献(1)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(1)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(4)
  • 参考文献(1)
  • 二级参考文献(3)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(15)
  • 参考文献(0)
  • 二级参考文献(15)
2013(5)
  • 参考文献(3)
  • 二级参考文献(2)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
集成学习
非稀疏多核学习
弱分类器
基本核
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导