原文服务方: 计算机测量与控制       
摘要:
针对传统SVM对噪声点和孤立点敏感的问题,以及不能解决样本特征规模大、含有异构信息、在特征空间中分布不平坦的问题,将模糊隶属度融入多核学习中,提出了一种模糊多核学习的方法;通过实验验证了模糊多核学习比传统SVM、模糊支持向量机以及多核学习具有更好的分类效果,从而验证了所提方法能够有效的克服传统SVM对噪声点敏感以及数据分布不平坦的问题.
推荐文章
一种改进的模糊多类支持向量机算法
支持向量机
统计学习理论
多类分类
模糊隶属函数
基于相似度量的模糊支持向量机算法研究
相似测量
核函数
模糊集 ,支持向量机
基于模糊支持向量机的面向语义图像检索算法
面向语义的图像检索
模糊支持向量机
最小隶属度
不可分区域
基于局部多核支持向量机的视频镜头边界检测
镜头边界检测
多核学习
局部敏感哈希
支持向量机
SMOTE采样
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于模糊多核学习的改进支持向量机算法研究
来源期刊 计算机测量与控制 学科
关键词 支持向量机 模糊支持向量机 多核学习 模糊多核学习
年,卷(期) 2016,(3) 所属期刊栏目 设计与应用
研究方向 页码范围 231-233
页数 3页 分类号 TP18|TP391.4
字数 语种 中文
DOI 10.16526/j.cnki.11-4762/tp.2016.03.063
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘建峰 重庆三峡学院教务处 7 15 3.0 3.0
2 淦燕 电子科技大学计算机视听觉实验室 1 4 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (11)
共引文献  (5)
参考文献  (4)
节点文献
引证文献  (4)
同被引文献  (14)
二级引证文献  (15)
1971(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(6)
  • 引证文献(0)
  • 二级引证文献(6)
2019(8)
  • 引证文献(2)
  • 二级引证文献(6)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
支持向量机
模糊支持向量机
多核学习
模糊多核学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机测量与控制
月刊
1671-4598
11-4762/TP
大16开
北京市海淀区阜成路甲8号
1993-01-01
出版文献量(篇)
0
总下载数(次)
0
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导