基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
不平衡数据集的分类问题是现今机器学习的一个热点问题。传统分类学习器以提高分类精度为准则导致对少数类识别准确率下降。本文首先综合描述了不平衡数据集分类问题的研究难点和研究进展,论述了对分类算法的评价指标,进而提出一种新的基于二次随机森林的不平衡数据分类算法。首先,用随机森林算法对训练样本学习找到模糊边界,将误判的多数类样本去除,改变原训练样本数据集结构,形成新的训练样本。然后再次使用随机森林对新训练样本数据进行训练。通过对UCI数据集进行实验分析表明新算法在处理不平衡数据集上在少数类的召回率和F值上有提高。
推荐文章
一种处理不平衡大数据的并行随机森林算法
不平衡大数据
MapReduce
随机森林
代价敏感
分层自助抽样
MapReduce环境下处理多类别不平衡数据的改进随机森林算法
MapReduce
随机森林
分层采样
HDDT决策树
选择集成
不平衡数据的集成分类算法综述
不平衡数据
集成学习
分类
代价敏感
数据采样
面向不平衡数据分类的KFDA-Boosting算法
核费希尔判别分析
集成学习
不平衡数据
分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于二次随机森林的不平衡数据分类算法
来源期刊 软件 学科 工学
关键词 模式识别 不平衡数据 随机森林 模糊边界
年,卷(期) 2016,(7) 所属期刊栏目 设计研究与应用
研究方向 页码范围 75-79
页数 5页 分类号 TP274
字数 3356字 语种 中文
DOI 10.3969/j.issn.1003-6970.2016.07.015
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张素伟 11 36 4.0 5.0
2 刘学 1 7 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (38)
共引文献  (74)
参考文献  (7)
节点文献
引证文献  (7)
同被引文献  (8)
二级引证文献  (12)
1972(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(3)
  • 参考文献(1)
  • 二级参考文献(2)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(5)
  • 参考文献(1)
  • 二级参考文献(4)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(9)
  • 引证文献(4)
  • 二级引证文献(5)
2019(7)
  • 引证文献(3)
  • 二级引证文献(4)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
模式识别
不平衡数据
随机森林
模糊边界
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件
月刊
1003-6970
12-1151/TP
16开
北京市3108信箱
1979
chi
出版文献量(篇)
9374
总下载数(次)
40
论文1v1指导