基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
It has been thought that wall thinning on the secondary side piping in nu-clear power plants is mostly caused by Flow-Accelerated Corrosion (FAC). Recently, it has been seen that wall thinning on the secondary side piping carrying two-phase flow is caused by not only FAC but also Liquid Droplet Impingement Erosion (LDIE). Moreover, it turns out that LDIE in nuclear power plants does not result from a single degradation mechanism but also from the simultaneous happenings of LDIE and FAC. This paper presents a comparison of the mass loss rate of the tested materials between carbon steel (A106 B) and low alloy steel (A335 P22) resulting from degradation effect. An experimental facility was set up to develop a prediction model for clarifying multiple degradation mechanisms that occur together. The experimental facility allows examining liquid droplet impingement erosion in the same conditions as the secondary side piping in nuclear power plants by generating the magnetite on the surface of the test materials. The magnetite is formed by controlling the water chemistry and the temperature of fluid inside the facility. In the initial stage of the experiments, the mass loss rate of A106 B was greater than that of A335 P22. However, after a certain period of time, the mass loss rate of A335 P22 became greater than that of A106 B. It is presumed that the results are caused by the different yield strengths of the test materials and the different degrees of buffer action of the magnetite deposited on their surfaces. The layer of magnetite on the surface of A106 is thicker than that of A335 P22, due to the different amount of chrome content. In nuclear power plants, carbon steel piping having experienced wall thinning degradation is generally replaced with low-alloy steel piping. However, the materials of pipes carrying two-phase flow should be selected considering their susceptibility to LDIE.
推荐文章
An experimental study on dynamic coupling process of alkaline feldspar dissolution and secondary min
Alkaline feldspar
Dissolution rate
Precipitation
Mineral conversion
Secondary porosity
Constraints on sedimentary ages of the Chuanlinggou Formation in the Ming Tombs, Beijing, North Chin
Detrital zircon
LA-ICP-MS U–Pb ages
SHRIMP
Chuanlinggou Formation
Ancient sedimentary environment
North China Craton
Organic geochemistry of the Lower Permian Tak Fa Formation in Phetchabun Province, Thailand: implica
Biomarker
Depositional environment
Source inputs
Tak Fa Formation
Khao Khwang Platform
Using trace elements of magnetite to constrain the origin of the Pingchuan hydrothermal low-Ti magne
SW China
Pingchuan iron deposit
Low-Ti iron deposit
Hydrothermal magnetite
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Development of a LDIE Prediction Theory in the Condition of Magnetite Formation on Secondary Side Piping in Nuclear Power Plants
来源期刊 核科学与技术国际期刊(英文) 学科 医学
关键词 Liquid DROPLET IMPINGEMENT (LDI) Flow-Accelerated Corrosion (FAC) Multiple Degradations Wall THINNING MAGNETITE
年,卷(期) 2017,(1) 所属期刊栏目
研究方向 页码范围 1-14
页数 14页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Liquid
DROPLET
IMPINGEMENT
(LDI)
Flow-Accelerated
Corrosion
(FAC)
Multiple
Degradations
Wall
THINNING
MAGNETITE
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
核科学与技术国际期刊(英文)
季刊
2161-6795
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
72
总下载数(次)
0
总被引数(次)
0
论文1v1指导