基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Most of the machineries in small or large-scale industry have rotating element supported by bearings for rigid support and accurate movement. For proper functioning of machinery, condition monitoring of the bearing is very important. In present study sound signal is used to continuously monitor bearing health as sound signals of rotating machineries carry dynamic information of components. There are numerous studies in literature that are reporting superiority of vibration signal of bearing fault diagnosis.However, there are very few studies done using sound signal. The cost associated with condition monitoring using sound signal (Microphone) is less than the cost of transducer used to acquire vibration signal (Accelerometer). This paper employs sound signal for condition monitoring of roller bearing by K-star classifier and k-nearest neighborhood classifier. The statistical feature extraction is performed from acquired sound signals. Then two-layer feature selection is done using J48 decision tree algorithm and random tree algorithm. These selected features were classified using K-star classifier and k-nearest neighborhood classifier and parametric optimization is performed to achieve the maximum classification accuracy. The classification results for both K-star classifier and k-nearest neighborhood classifier for condition monitoring of roller bearing using sound signals were compared.
推荐文章
GRMP协议中Classifier动态加载的实现
ForCES
GRMP
分类器
模块
软中断
基于K-Nearest Neighbor分类算法的异常检测模型
异常检测
算法
系统调用
特权进程
网络安全
基于K-近邻树的离群检测算法
离群检测
离群簇
最小生成树
不相似性
K-近邻
基于核聚类的K-均值聚类
核聚类
K-均值聚类
径向基函数(RBF)
支持向量机(SVM)
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Condition Monitoring of Roller Bearing by K-star Classifier and K-nearest Neighborhood Classifier Using Sound Signal
来源期刊 结构耐久性与健康监测(英文) 学科 工学
关键词 K-star k-nearest neighborhood K-NN machine learning approach condition monitoring fault diagnosis roller bearing DECISION TREE ALGORITHM J-48 random TREE ALGORITHM DECISION making two-layer feature selection sound signal statistical features
年,卷(期) 2017,(1) 所属期刊栏目
研究方向 页码范围 1-17
页数 17页 分类号 TP1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
K-star
k-nearest
neighborhood
K-NN
machine
learning
approach
condition
monitoring
fault
diagnosis
roller
bearing
DECISION
TREE
ALGORITHM
J-48
random
TREE
ALGORITHM
DECISION
making
two-layer
feature
selection
sound
signal
statistical
features
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
结构耐久性与健康监测(英文)
季刊
1930-2983
江苏省南京市浦口区东大路2号东大科技园A
出版文献量(篇)
39
总下载数(次)
0
总被引数(次)
0
论文1v1指导