基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The existing pattern matching methods of multivariate time series can hardly measure the similarity of multivariate hydrological time series accurately and efficiently.Considering the characteristics of multivariate hydrological time series,the continuity and global features of variables,we proposed a pattern matching method,PP-DTW,which is based on dynamic time warping.In this method,the multivariate time series is firstly segmented,and the average of each segment is used as the feature.Then,PCA is operated on the feature sequence.Finally,the weighted DTW distance is used as the measure of similarity in sequences.Carrying out experiments on the hydrological data of Chu River,we conclude that the pattern matching method can effectively describe the overall characteristics of the multivariate time series,which has a good matching effect on the multivariate hydrological time series.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Research on Pattern Matching Method of Multivariate Hydrological Time Series
来源期刊 国际计算机前沿大会会议论文集 学科 社会科学
关键词 HYDROLOGY MULTIVARIATE TIME series PATTERN MATCHING Dynamic TIME WARPING
年,卷(期) 2017,(1) 所属期刊栏目
研究方向 页码范围 16-18
页数 3页 分类号 C5
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
HYDROLOGY
MULTIVARIATE
TIME
series
PATTERN
MATCHING
Dynamic
TIME
WARPING
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导