基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Biometric security systems based on facial characteristics face a challenging task due to variability in the intrapersonal facial appearance of subjects traced to factors such as pose, illumination, expression and aging. This paper innovates as it proposes a deep learning and set-based approach to face recognition subject to aging. The images for each subject taken at various times are treated as a single set, which is then compared to sets of images belonging to other subjects. Facial features are extracted using a convolutional neural network characteristic of deep learning. Our experimental results show that set-based recognition performs better than the singleton-based approach for both face identification and face verification. We also find that by using set-based recognition, it is easier to recognize older subjects from younger ones rather than younger subjects from older ones.
推荐文章
基于recurrent neural networks的网约车供需预测方法
长短时记忆循环神经网络
网约车数据
交通优化调度
TensorFlow
深度学习
Burger's方程的若干AGE方法
Burger's方程
交替分组显式格式
稳定性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Age Invariant Face Recognition Using Convolutional Neural Networks and Set Distances
来源期刊 信息安全(英文) 学科 工学
关键词 Aging BIOMETRICS Convolutional Neural Networks (CNN) Deep LEARNING Image Set-Based Face Recognition (ISFR) Transfer LEARNING
年,卷(期) 2017,(3) 所属期刊栏目
研究方向 页码范围 174-185
页数 12页 分类号 TP39
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Aging
BIOMETRICS
Convolutional
Neural
Networks
(CNN)
Deep
LEARNING
Image
Set-Based
Face
Recognition
(ISFR)
Transfer
LEARNING
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息安全(英文)
季刊
2153-1234
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
230
总下载数(次)
0
总被引数(次)
0
论文1v1指导