作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The AASHTO’s guideline for geometric design, also known as the green book, requires that the inside of horizontal curves be cleared of obstructions to sight lines in order to provide sufficient sight distances. Recently, innovative use of Euler’s spiral for determination of clearance offsets has been proposed. However, suitability of the offsets as minimum criteria has not been evaluated. This paper presents comparison between the proposed offsets and minimum offsets determined with the computational method suggested in the green book. Results of comparison show that offsets determined with innovative use of the Euler’s spiral are always longer than minimum values determined with the computational method. The differences in lengths of the two sets of offsets increase with decrease in curve radii. Therefore, on sites with large radii offsets determined through innovative use of the Euler’s spiral may be implemented in the field since the offsets are only slightly longer than minimum offsets. On sites with short radii some offsets on tangent sections are very long such that they result in extra cleared areas that will not accommodate sightlines. The areas that do not accommodate sightlines may result in unnecessary extra earthwork costs where highways are located in cut zones. Additionally, it has been suggested in this paper that designers also consider other curves, including elliptical arcs, for roadside clearance envelopes. One advantage of elliptical arcs is that they are flexible to align with boundaries of clear zones on tangent sections regardless of sizes of radii of horizontal curves. Besides, most offsets to elliptical arcs are comparable to those determined with the green book’s computation method. An example of design chart has been presented for practitioners to use. The chart is for minimum offsets needed to provide a given sight distance while gradually transitioning clearance from boundaries of clear zones on tangent sections.
推荐文章
基于格式塔心理学和Euler spiral的轮廓修复算法
轮廓修复
Euler spiral
格式塔心理学
角点轮廓遮挡
一种基于Euler Spiral的缺失边界修复算法
Euler
Spiral
活动轮廓模型
轮廓提取
Euler积分与Euler级数的推广
Euler积分
Euler级数
推广
高阶Euler数和高阶Euler多项式
Euler数
Euler多项式
高阶Euler数
高阶Euler多项式
递推公式
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Suitability of the Euler’s Spiral for Roadside Clearance in Order to Provide Stopping Sight Distances
来源期刊 交通科技期刊(英文) 学科 医学
关键词 ROADSIDE CLEARANCE CLEARANCE OFFSETS Sightline OFFSETS CLEARANCE Enve-lope SIGHT Distance
年,卷(期) 2017,(3) 所属期刊栏目
研究方向 页码范围 221-239
页数 19页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
ROADSIDE
CLEARANCE
CLEARANCE
OFFSETS
Sightline
OFFSETS
CLEARANCE
Enve-lope
SIGHT
Distance
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
交通科技期刊(英文)
季刊
2160-0473
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
254
总下载数(次)
0
总被引数(次)
0
论文1v1指导