基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
As cyber attacks increase in volume and complexity,it becomes more and more difficult for existing analytical tools to detect previously unseen malware.This paper proposes a cooperative framework to leverage the robustness of big data analytics and the power of ensemble learning techniques to detect the abnormal behavior.In addition to this proposal,we implement a large scale network abnormal traffic behavior detection system performed by the framework.The proposed model detects the abnormal behavior from large scale network traffic data using a combination of a balanced decomposition algorithm and an ensemble SVM.First,the collected dataset is divided into k subsets based on the similarity between patterns using a parallel map reduce k-means algorithm.Then,patterns are randomly selected from each cluster and balanced training sub datasets are formed.Next,the subsets are fed into the mappers to build an SVM model.The construction of the ensemble is achieved in the reduce phase.The proposed structure closely delivers a high accuracy as the number of iterations increases.Experimental results show a promising gain in detection rate and false alarm compared with other existing models.
推荐文章
Entity Framework浅析
EDM
ADO.NET
Entity Framework
编程员
Entity Framework数据库访问
数据库
模型
代码
Entity Framework技术
将"Cooperative Learning"融入《分镜表现》课堂
影视动画专业
专业知识
教学任务
行业标准
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A Cooperative Abnormal Behavior Detection Framework Based on Big Data Analytics
来源期刊 国际计算机前沿大会会议论文集 学科 社会科学
关键词 Support vector machines ABNORMAL behavior detection Big data CYBER ATTACKS ENSEMBLE CLASSIFIER MapReduce
年,卷(期) 2017,(1) 所属期刊栏目
研究方向 页码范围 48-50
页数 3页 分类号 C5
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Support
vector
machines
ABNORMAL
behavior
detection
Big
data
CYBER
ATTACKS
ENSEMBLE
CLASSIFIER
MapReduce
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导