基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Malware detection is an important challenge in the field of information security.The paper proposes a novel method using deep learning based on static analysis.Deep learning has stronger nonlinear expression ability than shallow learning,so it has received much attention from scholar and manufacturers.We use static analysis to extract the malware features are mapped into the input of deep learning.The experiments show that the method is suitable for detecting malware.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Groundwater quality assessment using multivariate analysis, geostatistical modeling, and water quali
Groundwater
Multivariate analysis
Geostatistical modeling
Geochemical modeling
Mineralization
Ordinary Kriging
Spatial analysis of carbon storage density of mid-subtropical forests using geostatistics: a case st
Carbon storage density
Geostatistics
Mid-subtropical forests
Spatial autocorrelation
Spatial heterogeneity
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Automatic Malware Detection Using Deep Learning Based on Static Analysis
来源期刊 国际计算机前沿大会会议论文集 学科 社会科学
关键词 ENSEMBLE learning K-MEANS NEGATIVE CORRELATION NEURAL network
年,卷(期) 2017,(1) 所属期刊栏目
研究方向 页码范围 126-128
页数 3页 分类号 C5
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
ENSEMBLE
learning
K-MEANS
NEGATIVE
CORRELATION
NEURAL
network
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导