基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Viticulturists traditionally have a keen interest in studying the relationship between the biochemistry of grapevines’ leaves/petioles and their associated spectral reflectance in order to understand the fruit ripening rate, water status, nutrient levels, and disease risk. In this paper, we implement imaging spectroscopy (hyperspectral) reflectance data, for the reflective 330 - 2510 nm wavelength region (986 total spectral bands), to assess vineyard nutrient status;this constitutes a high dimensional dataset with a covariance matrix that is ill-conditioned. The identification of the variables (wavelength bands) that contribute useful information for nutrient assessment and prediction, plays a pivotal role in multivariate statistical modeling. In recent years, researchers have successfully developed many continuous, nearly unbiased, sparse and accurate variable selection methods to overcome this problem. This paper compares four regularized and one functional regression methods: Elastic Net, Multi-Step Adaptive Elastic Net, Minimax Concave Penalty, iterative Sure Independence Screening, and Functional Data Analysis for wavelength variable selection. Thereafter, the predictive performance of these regularized sparse models is enhanced using the stepwise regression. This comparative study of regression methods using a high-dimensional and highly correlated grapevine hyperspectral dataset revealed that the performance of Elastic Net for variable selection yields the best predictive ability.
推荐文章
DataReader与DataSet对象之比较分析
ADO.NET
数据访问
DataReader对象
DataSet对象
Thermodynamic properties of San Carlos olivine at high temperature and high pressure
San Carlos olivine
Thermodynamic property
Thermal expansion
Heat capacity
Temperature gradient
The use of hydrogeochemical analyses and multivariate statistics for the characterization of thermal
Hydrogeochemistry
Thermal waters
Multivariate statistical analysis
Silica geothermometers
Mixing models
Cold groundwaters
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Dimensionality Reduction of High-Dimensional Highly Correlated Multivariate Grapevine Dataset
来源期刊 统计学期刊(英文) 学科 医学
关键词 HIGH-DIMENSIONAL DATA MULTI-STEP Adaptive Elastic Net MINIMAX CONCAVE Penalty Sure Independence Screening Functional DATA Analysis
年,卷(期) 2017,(4) 所属期刊栏目
研究方向 页码范围 702-717
页数 16页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
HIGH-DIMENSIONAL
DATA
MULTI-STEP
Adaptive
Elastic
Net
MINIMAX
CONCAVE
Penalty
Sure
Independence
Screening
Functional
DATA
Analysis
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
统计学期刊(英文)
半月刊
2161-718X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
584
总下载数(次)
0
总被引数(次)
0
论文1v1指导