基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
当前基于卷积神经网络(CNN)的超分辨率(SR)重建算法,虽然取得了很大的成功,但是重建图像高频纹理的效果仍然不能令人满意,其高分辨率(HR)图像局部边缘存在明显的震荡.本文提出一种结合形态学成分分析(MCA)分解的边缘指导双通道CNNSR算法:待处理的低分辨率(LR)图像通过MCA分解为纹理部分和平滑结构部分;纹理部分和原LR图像共同组成双通道,输入到改进的网络结构中重建HR纹理部分;结合HR纹理输出与LR平滑结构部分重建HR图像.训练过程采用最小化纹理损失与原图像损失之和最优化网络模型参数.后处理包括:执行网络输出与LR输入图像的直方图匹配使色调保持一致,提升感官效果;应用迭代的反向映射使HR重建与LR输入保持退化算子一致性提高PSNR值.实验结果显示:该方法能够很好地恢复HR图像的纹理细节,对纹理细节丰富的图像恢复效果更好.
推荐文章
基于金字塔式双通道卷积神经网络的深度图像超分辨率重建
深度图像
超分辨率重建
双通道卷积神经网络
金字塔式网络结构
基于卷积神经网络的视频图像超分辨率重建方法
视频
超分辨率重建
卷积神经网络
深度学习
基于改进卷积神经网络的图像超分辨率算法研究
低分辨率
超分辨率
卷积神经网络
图像处理
复原
基于深度复合卷积神经网络的低分辨率单影像复原
超低分辨率图像
卷积神经网络
单影像复原
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于边缘指导的双通道卷积神经网络 单图像超分辨率算法
来源期刊 南京信息工程大学学报 学科 工学
关键词 超分辨率 卷积神经网络 形态学成分分析 双通道输入
年,卷(期) 2017,(6) 所属期刊栏目 研究性论文
研究方向 页码范围 669-674
页数 6页 分类号 TP391.41
字数 4364字 语种 中文
DOI 10.13878/j.cnki.jnuist.2017.06.012
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 周登文 华北电力大学控制与计算机工程学院 14 49 3.0 6.0
2 李春平 华北电力大学控制与计算机工程学院 2 2 1.0 1.0
3 贾慧秒 华北电力大学控制与计算机工程学院 2 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (7)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
超分辨率
卷积神经网络
形态学成分分析
双通道输入
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京信息工程大学学报
双月刊
1674-7070
32-1801/N
南京市宁六路219号
chi
出版文献量(篇)
1162
总下载数(次)
7
总被引数(次)
4849
相关基金
北京市自然科学基金
英文译名:Natural Science Foundation of Beijing Province
官方网址:http://210.76.125.39/zrjjh/zrjj/
项目类型:重大项目
学科类型:
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导