基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了有效提高深度图像的分辨率,文中借鉴经典SqueezeNet网络结构,提出一种基于Fire Module的卷积神经网络模型.该算法实现了直接从低分辨率图像到高分辨率图像的映射和转化,其中Fire Module作为网络的非线性映射模块,在减少参数的同时可学习图像的深层特征.为了避免插值预处理,在网络的输出层引入反卷积层,实现3倍上采样和高分辨率图像的输出.实验表明,采用该基于Fire Module的卷积神经网络模型的反卷积算法得到的超分辨率图像细节更加丰富,客观指标PSNR值和SSIM值的评价也明显优于其他算法.
推荐文章
基于改进卷积神经网络的图像超分辨率算法研究
低分辨率
超分辨率
卷积神经网络
图像处理
复原
基于卷积神经网络的视频图像超分辨率重建方法
视频
超分辨率重建
卷积神经网络
深度学习
基于神经网络学习的锥形束CT图像超分辨率重建算法
锥形束CT
卷积神经网络
降噪
超分辨率重建
基于金字塔式双通道卷积神经网络的深度图像超分辨率重建
深度图像
超分辨率重建
双通道卷积神经网络
金字塔式网络结构
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于压缩卷积神经网络的图像超分辨率算法
来源期刊 电子科技 学科 工学
关键词 图像处理 超分辨重建 卷积神经网络 反卷积 残差块 层次块
年,卷(期) 2020,(5) 所属期刊栏目
研究方向 页码范围 1-8
页数 8页 分类号 TP391
字数 6010字 语种 中文
DOI 10.16180/j.cnki.issn1007-7820.2020.05.001
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 秦兴 杭州电子科技大学电子信息学院 12 26 3.0 4.0
2 陈滨 杭州电子科技大学计算机学院 4 1 1.0 1.0
3 高晓琪 杭州电子科技大学电子信息学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (72)
共引文献  (36)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1970(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(7)
  • 参考文献(0)
  • 二级参考文献(7)
2010(8)
  • 参考文献(1)
  • 二级参考文献(7)
2011(7)
  • 参考文献(2)
  • 二级参考文献(5)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(6)
  • 参考文献(2)
  • 二级参考文献(4)
2016(6)
  • 参考文献(1)
  • 二级参考文献(5)
2017(2)
  • 参考文献(1)
  • 二级参考文献(1)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图像处理
超分辨重建
卷积神经网络
反卷积
残差块
层次块
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子科技
月刊
1007-7820
61-1291/TN
大16开
西安电子科技大学
1987
chi
出版文献量(篇)
9344
总下载数(次)
32
总被引数(次)
31437
相关基金
浙江省自然科学基金
英文译名:
官方网址:http://www.zjnsf.net/
项目类型:一般项目
学科类型:
论文1v1指导