原文服务方: 计算技术与自动化       
摘要:
为了将低分辨率图像增强为高分辨率(HR)图像并最终得到超分辨率(SR)图像,提出了具有混合残差和密集连接结构的轻量级神经网络(LNN)来提高单幅图像超分辨率(SISR)性能,构建了层间SR-LNN(SR-ILLNN)和简化SR-LNN(SR-SLNN)两种LNN。SR-ILLNN采用基于部分卷积的填充方案来避免边界信息的丢失,结合局部和全局跳跃连接来训练卷积层之间输出特征图上的残差,并在低分辨率和高分辨率图像上对SR-ILLNN进行训练。通过SR-SLNN删除SR-ILLNN的高分辨率特征层和共享特征层来降低SR-ILLNN的网络复杂度。从多样化2K(DIV2K)图像数据集中提取训练图像,测试评估SR的准确性和网络复杂性。实验结果表明,与传统方法相比,SR-ILLNN和SR-SLNN可以显著降低参数数量、内存容量和减少计算时间,同时保持相似的图像质量。
推荐文章
基于卷积神经网络的视频图像超分辨率重建方法
视频
超分辨率重建
卷积神经网络
深度学习
基于改进卷积神经网络的图像超分辨率算法研究
低分辨率
超分辨率
卷积神经网络
图像处理
复原
深度学习下的高效单幅图像超分辨率重建方法
深度学习
超分辨率重建
卷积神经网络
亚像素卷积
风格转移
基于神经网络学习的锥形束CT图像超分辨率重建算法
锥形束CT
卷积神经网络
降噪
超分辨率重建
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于CNN的轻量级神经网络单幅图像超分辨率研究
来源期刊 计算技术与自动化 学科
关键词 卷积神经网络 轻量级神经网络 单幅图像超分辨率 图像增强
年,卷(期) 2022,(1) 所属期刊栏目 图形图像技术
研究方向 页码范围 98-105
页数 7页 分类号 TP391.41,TP183
字数 语种 中文
DOI 10.16339/j.cnki.jsjsyzdh.202201018
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
轻量级神经网络
单幅图像超分辨率
图像增强
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算技术与自动化
季刊
1003-6199
43-1138/TP
16开
1982-01-01
chi
出版文献量(篇)
2979
总下载数(次)
0
总被引数(次)
14675
论文1v1指导