基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对经典的基于卷积神经网络的单幅图像超分辨率重建方法网络较浅、提取的特征少、重建图像模糊等问题,提出了一种改进的卷积神经网络的单幅图像超分辨率重建方法,设计了由密集残差网络和反卷积网络组成的新型深度卷积神经网络结构.原始低分辨率图像输入网络,利用密集残差学习网络获取更丰富的有效特征并加快特征梯度流动,其次通过反卷积层将图像特征上采样到目标图像大小,再利用密集残差学习高维特征,最后融合不同卷积核提取的特征得到最终的重建图像.在Set5和Set14数据集上进行了实验,并和Bicubic、K-SVD、SelfEx、SRCNN等经典重建方法进行了对比,重建出的图像在整体清晰度和边缘锐度方面更好,另外峰值信噪比(PSNR)平均分别提高了2.69 dB、1.68 dB、0.74 dB和0.61 dB.实验结果表明,该方法能够获取更丰富的细节信息,得到更好的视觉效果,达到了图像超分辨率的增强任务.
推荐文章
基于卷积神经网络的视频图像超分辨率重建方法
视频
超分辨率重建
卷积神经网络
深度学习
基于改进卷积神经网络的图像超分辨率算法研究
低分辨率
超分辨率
卷积神经网络
图像处理
复原
深度学习下的高效单幅图像超分辨率重建方法
深度学习
超分辨率重建
卷积神经网络
亚像素卷积
风格转移
基于CNN的轻量级神经网络单幅图像超分辨率研究
卷积神经网络
轻量级神经网络
单幅图像超分辨率
图像增强
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 改进的卷积神经网络单幅图像超分辨率重建
来源期刊 计算机工程与应用 学科 工学
关键词 图像超分辨率重建 深度学习 卷积神经网络 密集残差学习 反卷积
年,卷(期) 2019,(13) 所属期刊栏目 热点与综述
研究方向 页码范围 1-7
页数 7页 分类号 TP391.41
字数 6591字 语种 中文
DOI 10.3778/j.issn.1002-8331.1812-0315
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 曾接贤 南昌航空大学江西省图像处理与模式识别重点实验室 88 680 13.0 23.0
2 倪申龙 南昌航空大学江西省图像处理与模式识别重点实验室 2 5 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (4)
同被引文献  (40)
二级引证文献  (15)
2019(3)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(1)
2019(3)
  • 引证文献(2)
  • 二级引证文献(1)
2020(16)
  • 引证文献(2)
  • 二级引证文献(14)
研究主题发展历程
节点文献
图像超分辨率重建
深度学习
卷积神经网络
密集残差学习
反卷积
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导