原文服务方: 华侨大学学报(自然科学版)       
摘要:
为满足实际工业生产需要,提出一种基于深度学习的快速超分辨率图像重建方法.采用一种快速的卷积神经网络结构,使用级联的小卷积核以取得重建速度上的提升,加深卷积网络以取得重建质量上的提升.实验结果表明:在标准的公共数据集上,该算法重建的高分辨率图像在主观视觉感受和客观的图像质量评价(峰值信噪比)上取得较好的效果,且重建时间大大缩短;将算法应用在实际的项目中,能达到阈值分割后准确检测物体的标准,减少企业对高额工业相机的经济开支.
推荐文章
基于深度学习的辐射图像超分辨率重建方法
辐射图像
超分辨率重建
深度学习
深度学习下的高效单幅图像超分辨率重建方法
深度学习
超分辨率重建
卷积神经网络
亚像素卷积
风格转移
基于深度学习的单图像超分辨率重建研究综述
单图像超分辨率重建
深度学习
密集卷积网络
生成式对抗网络
基于深度学习的图像超分辨率重建技术的研究
人工智能
深度学习
超分辨率
制造工艺
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 采用深度学习的快速超分辨率 图像重建方法
来源期刊 华侨大学学报(自然科学版) 学科
关键词 超分辨率图像重建 深度学习 卷积神经网络 级联
年,卷(期) 2019,(2) 所属期刊栏目
研究方向 页码范围 245-250
页数 6页 分类号 TP391
字数 语种 中文
DOI 10.11830/ISSN.1000-5013.201804064
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 郑力新 华侨大学工学院 144 934 15.0 24.0
5 朱建清 华侨大学工学院 21 62 5.0 7.0
9 张圣祥 华侨大学工学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (48)
共引文献  (25)
参考文献  (11)
节点文献
引证文献  (2)
同被引文献  (5)
二级引证文献  (0)
1979(1)
  • 参考文献(1)
  • 二级参考文献(0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(7)
  • 参考文献(1)
  • 二级参考文献(6)
2015(6)
  • 参考文献(1)
  • 二级参考文献(5)
2016(8)
  • 参考文献(1)
  • 二级参考文献(7)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
超分辨率图像重建
深度学习
卷积神经网络
级联
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
华侨大学学报(自然科学版)
双月刊
1000-5013
35-1079/N
大16开
1980-01-01
chi
出版文献量(篇)
2681
总下载数(次)
0
总被引数(次)
14643
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导