Fast-Than-Nyquist (FTN) transmission is a promising method to improve the spectrum efficiency for future wireless communication systems. However, this benefit of FTN is at the price of inducing the inter-symbol interference (ISI), which increases the complexity of the receiver. In this paper, a circulated block transmission scheme for FTN signaling, i.e. CB-FTN system is proposed. The detail implementation structure of CB-FTN transceiver is presented, in which the ISI caused by FTN transmission is canceled by the frequency-domain equalization (FDE), and the inter-block interference (IBI) caused by the multi-path channel is overcome by the cyclic-prefix. The postprocessing signal to noise ratio (pSNR) is analyzed for the CB-FTN receiver with zero-forcing FDE in AWGN channel, which is verified by the simulation results. Moreover, the BER performances and computational complexity of CB-FTN system are compared with the existed scheme.