基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The uniform and extension distribution of the optimal solution are very important criterion for the quality evaluation of the multi-objective programming problem. A genetic algorithm based on agent and individual density is used to solve the multi-objective optimization problem. In the selection process, each agent is selected according to the individual density distance in its neighborhood, and the crossover operator adopts the simulated binary crossover method. The self-learning behavior only applies to the individuals with the highest energy in current population. A few classical multi-objective function optimization examples were used tested and two evaluation indexes U-measure and S-measure are used to test the performance of the algorithm. The experimental results show that the algorithm can obtain uniformity and widespread distribution Pareto solutions.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A Multi-objective Genetic Algorithm Bas on Individual Density Distance
来源期刊 国际计算机前沿大会会议论文集 学科 社会科学
关键词 INDIVIDUAL density distance MULTI-OBJECTIVE optimization MULTI-AGENT elf-learning S-measure U-measure
年,卷(期) 2017,(2) 所属期刊栏目
研究方向 页码范围 103-104
页数 2页 分类号 C5
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
INDIVIDUAL
density
distance
MULTI-OBJECTIVE
optimization
MULTI-AGENT
elf-learning
S-measure
U-measure
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导