基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Object classification in high-density 3D point clouds with applications in precision farming is a very challenging area due to high intra-class variances and high degrees of occlusions and overlaps due to self-similarities and densely packed plant organs, especially in ripe growing stages. Due to these application specific challenges, this contribution gives an experimental evaluation of the performance of local shape descriptors (namely Point-Feature Histogram (PFH), Fast-Point-Feature Histogram (FPFH), Signature of Histograms of Orientations (SHOT), Rotational Projection Statistics (RoPS) and Spin Images) in the classification of 3D points into different types of plant organs. We achieve very good results on four representative scans of a leave, a grape bunch, a grape branch and a flower of between 94 and 99% accuracy in the case of supervised classification with an SVM and between 88 and 96% accuracy using a k-means clustering approach. Additionally, different distance measures and the influence of the number of cluster centres are examined.
推荐文章
剖析3D 电视
3D电视
偏光式
主动快门式
3D视频格式
frame packing HDMI1.4
3D 电视发展探析
3D电视
现状
发展方向
3D电视探析
3D
电视
立体影像
立体图形
视网膜
立体感
眼睛
差距
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Experimental Evaluation of the Performance of Local Shape Descriptors for the Classification of 3D Data in Precision Farming
来源期刊 电脑和通信(英文) 学科 医学
关键词 DESCRIPTOR PERFORMANCE PRECISION FARMING 3D DATA
年,卷(期) 2017,(12) 所属期刊栏目
研究方向 页码范围 1-12
页数 12页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
DESCRIPTOR
PERFORMANCE
PRECISION
FARMING
3D
DATA
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑和通信(英文)
月刊
2327-5219
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
783
总下载数(次)
0
总被引数(次)
0
论文1v1指导