为了提高粒子群优化算法(Particle swarm optimization,PSO)的优化效率,降低其陷入局部最优的概率,提出了一种融合榜样学习和反向学习的PSO算法(PSO based on combing Example learning and Opposition learning,EOPSO).首先,对粒子群中的非最优粒子采用新颖的榜样学习机制更新,以便提高全局搜索能力,避免算法陷入局部最优;其次,对粒子群中最优粒子采用反向学习混合机制更新,提升该粒子的搜索能力,进一步避免算法陷入局部最优;最后,对粒子群中的最优粒子还采用了自身变异机制更新,有利于搜索前期的全局搜索和后期的快速收敛.在15个不同维度的基准函数上进行了仿真实验,实验结果表明,与最先进的PSO改进算法ELPSO、SRPSO、LFPSO、HCLPSO相比,EOPSO优化性能更好.