原文服务方: 微电子学与计算机       
摘要:
针对烟花算法(Fireworks Algorithm,FWA)性能提升瓶颈和收敛速度较慢的问题,通过引入反向学习策略和机动爆炸的机制,提出了基于反向学习与机动爆炸烟花优化算法(Fireworks Algorithm based on Reverse learning and Maneuver explode,RLMEFWA).该算法首先采用反向学习策略取代随机初始化生成初始种群以保证群体的多样性;然后每个烟花根据其在当前群体中的位置的优劣情况来选择不同爆炸的方式,处于较优位置的烟花选择机动爆炸方式,以当前种群最优位置为基准,改变自身位置信息向其靠近;处于较劣位置的烟花选择非机动爆炸方式,随机改变自身的位置信息.分别把烟花算法(FWA)、标准粒子群算法(SPSO)、增强烟花算法(EFWA)和RLMEFWA在10个典型的基准测试函数中进行仿真对比,结果表明在收敛速度和计算精度以及稳定性方面RLMEFWA均优于其他三种算法.
推荐文章
应用精英反向学习的多目标烟花爆炸算法
烟花爆炸优化
精英反向学习
多目标优化算法
基于扰动的精英反向学习粒子群优化算法
粒子群优化算法
精英反向学习
惯性权重
极值扰动
局部最优解
基于反向学习与动态记忆反馈的烟花算法
烟花算法
反馈层
变化趋势
反向学习
基准函数
反向烟花算法及其应用研究
反向学习
烟花算法
混沌控制
参数辨识
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于反向学习与机动爆炸烟花优化算法
来源期刊 微电子学与计算机 学科
关键词 烟花算法 机动爆炸 基准函数 最优位置 反向学习
年,卷(期) 2017,(7) 所属期刊栏目
研究方向 页码范围 105-112
页数 8页 分类号 TP3
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 拱长青 沈阳航空航天大学计算机学院 31 203 8.0 13.0
2 李席广 沈阳航空航天大学计算机学院 9 59 5.0 7.0
3 韩守飞 沈阳航空航天大学计算机学院 3 20 3.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (22)
共引文献  (53)
参考文献  (1)
节点文献
引证文献  (3)
同被引文献  (8)
二级引证文献  (1)
1945(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
烟花算法
机动爆炸
基准函数
最优位置
反向学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微电子学与计算机
月刊
1000-7180
61-1123/TN
大16开
1972-01-01
chi
出版文献量(篇)
9826
总下载数(次)
0
总被引数(次)
59060
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导