作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对粒子群算法容易陷入局部最优解的问题,提出了一种基于动态分级和邻域反向学习的改进粒子群算法.该算法通过构建动态分级机制,将种群中的粒子动态地划分成3个等级,对不同等级内的粒子采取不同的扰动行为,使得粒子在增强种群多样性的同时保持向全局最优方向进化;采用粒子智能更新方式,提高了粒子的搜索能力;引入动态邻域反向学习点建立全局搜索策略,促使种群快速寻优.最后,利用多种典型测试函数对该算法进行仿真实验,结果表明,与其他几种优化算法相比,本算法具有较好的收敛性和稳定性.
推荐文章
基于扰动的精英反向学习粒子群优化算法
粒子群优化算法
精英反向学习
惯性权重
极值扰动
局部最优解
一种基于正向学习和反向学习的改进鸡群算法
鸡群算法
正向学习
反向学习
基于反向学习粒子群算法的无线传感器网络路由优化
无线传感器网络
反向学习
粒子群算法
路由优化
基于折射原理反向学习模型的改进粒子群算法
智能优化算法
粒子群优化算法
反向学习
折射原理
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于动态分级和邻域反向学习的改进粒子群算法
来源期刊 浙江大学学报(理学版) 学科 工学
关键词 粒子群算法 动态分级机制 邻域反向学习 全局搜索策略
年,卷(期) 2018,(3) 所属期刊栏目 现代优化理论与算法专栏
研究方向 页码范围 261-271
页数 11页 分类号 TP18|TP301.6|O224
字数 6316字 语种 中文
DOI 10.3785/j.issn.1008-9497.2018.03.001
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 任燕芝 西安电子科技大学数学与统计学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (27)
共引文献  (44)
参考文献  (9)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(5)
  • 参考文献(1)
  • 二级参考文献(4)
2012(4)
  • 参考文献(2)
  • 二级参考文献(2)
2013(3)
  • 参考文献(1)
  • 二级参考文献(2)
2014(5)
  • 参考文献(1)
  • 二级参考文献(4)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
粒子群算法
动态分级机制
邻域反向学习
全局搜索策略
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
浙江大学学报(理学版)
双月刊
1008-9497
33-1246/N
大16开
杭州市天目山路148号浙江大学
32-36
1956
chi
出版文献量(篇)
3051
总下载数(次)
2
总被引数(次)
24460
论文1v1指导