作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
全局K-均值聚类算法需要随机选取初始的聚类中心,本文基于K中心点算法的思想,将其作为全局K-均值聚类算法的初始聚类中心,并对全局K-均值聚类算法进行改进.依托人工模拟数据和学习库中的数据分析,对比两种算法的性能,得出改进算法聚类时间短,鲁棒性强的结论.
推荐文章
基于差分演化的K-均值聚类算法
聚类
差分演化算法
K-均值
基于改进引力搜索的混合K-调和均值聚类算法研究
混合K-调和均值聚类
KHM算法
改进引力搜索算法
全局搜索能力
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于全局K-均值聚类的改进算法
来源期刊 电脑与电信 学科 工学
关键词 全局K-均值聚类算法 K中心点算法 改进
年,卷(期) 2017,(11) 所属期刊栏目 基金项目
研究方向 页码范围 25-27
页数 3页 分类号 TP311.13
字数 2659字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李燕梅 16 9 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (30)
共引文献  (42)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(4)
  • 参考文献(1)
  • 二级参考文献(3)
2010(6)
  • 参考文献(1)
  • 二级参考文献(5)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
全局K-均值聚类算法
K中心点算法
改进
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑与电信
月刊
1008-6609
44-1606/TN
大16开
广州市连新路171号国际科技中心B108室
1995
chi
出版文献量(篇)
8962
总下载数(次)
13
总被引数(次)
9565
论文1v1指导