基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在许多应用中,LSH(Locality Sensitive Hashing)以及各种变体,是解决近似最近邻问题的有效算法之一.虽然这些算法能够很好地处理分布比较均匀的高维数据,但从设计方案来看,都没有针对数据分布不均匀的情况做相应的优化.针对这一问题,本文提出了一种新的基于LSH的解决方案(M2LSH,2 Layers Merging LSH),对于数据分布不均匀的情况依然能得到一个比较好的查询效果.首先,将数据存放到具有计数功能的组合哈希向量表示的哈希桶中,然后通过二次哈希将这些桶号投影到一维空间,在此空间根据各个桶中存放的数据个数合并相邻哈希桶,使得新哈希桶中的数据量能够大致均衡.查询时仅访问有限个哈希桶,就能找到较优结果.本文给出了详细的理论分析,并通过实验验证了M2LSH的性能,不仅能减少访问时间,也可提高结果的正确率.
推荐文章
基于 LSH和 MapReduce 的近邻模型推荐算法
协同过滤
K-nearest Neighbor
LSH
MapReduce
无索引空间数据库的基于最优点的集合最近邻查找算法
空间数据库
最近邻
集合最近邻
查询区域
基于SURF和快速近似最近邻搜索的图像匹配算法
图像匹配
快速近似邻近点搜索
加速鲁棒特征
改进的样本一致性
双向匹配
基于内容的SIFT+LSH管道缺陷检索算法研究
基于内容的图像检索
SIFT特征
LSH算法
相似度
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 M2LSH:基于LSH的高维数据近似最近邻查找算法
来源期刊 电子学报 学科 工学
关键词 近似最近邻 KNN查询 局部敏感哈希 高维数据
年,卷(期) 2017,(6) 所属期刊栏目 学术论文
研究方向 页码范围 1431-1442
页数 12页 分类号 TP311.3
字数 9904字 语种 中文
DOI 10.3969/j.issn.0372-2112.2017.06.022
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 钱江波 宁波大学信息科学与工程学院 54 202 8.0 11.0
2 董一鸿 宁波大学信息科学与工程学院 55 224 8.0 13.0
3 陈华辉 宁波大学信息科学与工程学院 63 319 9.0 15.0
4 李灿 宁波大学信息科学与工程学院 2 5 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (44)
共引文献  (127)
参考文献  (7)
节点文献
引证文献  (3)
同被引文献  (4)
二级引证文献  (1)
1973(1)
  • 参考文献(1)
  • 二级参考文献(0)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(4)
  • 参考文献(1)
  • 二级参考文献(3)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(7)
  • 参考文献(0)
  • 二级参考文献(7)
2008(9)
  • 参考文献(0)
  • 二级参考文献(9)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
近似最近邻
KNN查询
局部敏感哈希
高维数据
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子学报
月刊
0372-2112
11-2087/TN
大16开
北京165信箱
2-891
1962
chi
出版文献量(篇)
11181
总下载数(次)
11
总被引数(次)
206555
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
浙江省自然科学基金
英文译名:
官方网址:http://www.zjnsf.net/
项目类型:一般项目
学科类型:
论文1v1指导