为准确建立焦炉火道温度模型,保证焦炭质量,节约能耗,提出了基于回声状态网络(echo state network, ESN)模型的焦炉火道温度的预测方法.针对炼焦过程中强耦合、大滞后的特点,以及实际生产中大量炼焦数据未被合理利用的现状,运用数据驱动与非线性建模相结合的方法,首先,对采集的数据进行数据处理,保证了数据的真实有效性;然后,分别建立了焦炉火道温度系统的BP神经网络预测模型和ESN预测模型;最后,在Matlab环境下进行仿真实验,并对2种预测模型的平均相对误差和命中率进行对比.实验表明:ESN模型与BP神经网络模型相比,平均相对误差减小了0.66%,命中率提高了6.39%,说明在结合数据驱动的前提下,ESN模型更能准确预测火道温度,为下一步火道温度的优化控制奠定基础.