研究了聚类分析技术在网络推荐系统中的应用.由于k均值(k-means)聚类算法易受到局部最优与噪声点等因素的影响,文章结合DBSCAN(Density-based Spatial Clustering of Application with Noise)算法和MMD(Max-Min Distance)初始聚类中心选取算法,对原始k-means算法进行了改进,提出了DMK(Density-based and Max-min-distance K-means)算法.该算法使用DBSCAN选取高密度点作为第一个聚类中心点的备选范围,接着选择相距最远的K-1个点作为其余的K-1个聚类中心,然后用得到的这组初始聚类中心进行k-means聚类.仿真与实验结果表明,该算法选择的初始聚类中心比较分散且代表性好,聚类的迭代次数减少,聚类结果的纯度提高.