基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
This paper proposes an adaptive and diverse hybrid-based ensemble method to improve the performance of binary classification. The proposed method is a non-linear combination of base models and the application of adaptive selection of the most suitable model for each data instance. Ensemble method, an important machine learning technique uses multiple single models to construct a hybrid model. A hybrid model generally performs better compared to a single individual model. In a given dataset the application of diverse single models trained with different machine learning algorithms will have different capabilities in recognizing patterns in the given training sample. The proposed approach has been validated on Repeat Buyers Prediction dataset and Census Income Prediction dataset. The experiment results indicate up to 18.5% improvement on F1 score for the Repeat Buyers dataset compared to the best individual model. This improvement also indicates that the proposed ensemble method has an exceptional ability of dealing with imbalanced datasets. In addition, the proposed method outperforms two other commonly used ensemble methods (Averaging and Stacking) in terms of improved F1 score. Finally, our results produced a slightly higher AUC score of 0.718 compared to the previous result of AUC score of 0.712 in the Repeat Buyers competition. This roughly 1% increase AUC score in performance is significant considering a very big dataset such as Repeat Buyers.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Using Hybrid and Diversity-Based Adaptive Ensemble Method for Binary Classification
来源期刊 智能科学国际期刊(英文) 学科 医学
关键词 Bigdata ANALYTICS MACHINE Learning ADAPTIVE ENSEMBLE Methods BINARY Classification
年,卷(期) 2018,(3) 所属期刊栏目
研究方向 页码范围 43-74
页数 32页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Bigdata
ANALYTICS
MACHINE
Learning
ADAPTIVE
ENSEMBLE
Methods
BINARY
Classification
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能科学国际期刊(英文)
季刊
2163-0283
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
102
总下载数(次)
0
总被引数(次)
0
论文1v1指导