作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
A quantum time-dependent spectrum analysis, or simply, quantum spectral analysis (QSA) is presented in this work, and it’s based on Schrödinger’s equation. In the classical world, it is named frequency in time (FIT), which is used here as a complement of the traditional frequency-dependent spectral analysis based on Fourier theory. Besides, FIT is a metric which assesses the impact of the flanks of a signal on its frequency spectrum, not taken into account by Fourier theory and lets alone in real time. Even more, and unlike all derived tools from Fourier Theory (i.e., continuous, discrete, fast, short-time, fractional and quantum Fourier Transform, as well as, Gabor) FIT has the following advantages, among others: 1) compact support with excellent energy output treatment, 2) low computational cost, O(N) for signals and O(N2) for images, 3) it does not have phase uncertainties (i.e., indeterminate phase for a magnitude = 0) as in the case of Discrete and Fast Fourier Transform (DFT, FFT, respectively). Finally, we can apply QSA to a quantum signal, that is, to a qubit stream in order to analyze it spectrally.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Quantum-Classical Algorithm for an Instantaneous Spectral Analysis of Signals: A Complement to Fourier Theory
来源期刊 量子信息科学期刊(英文) 学科 数学
关键词 FOURIER THEORY Heisenberg’s Uncertainty Principle QUANTUM FOURIER Transform QUANTUM Information PROCESSING QUANTUM Signal PROCESSING Schr?dinger’s Equation Spectral Analysis
年,卷(期) 2018,(2) 所属期刊栏目
研究方向 页码范围 52-77
页数 26页 分类号 O1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
FOURIER
THEORY
Heisenberg’s
Uncertainty
Principle
QUANTUM
FOURIER
Transform
QUANTUM
Information
PROCESSING
QUANTUM
Signal
PROCESSING
Schr?dinger’s
Equation
Spectral
Analysis
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
量子信息科学期刊(英文)
季刊
2162-5751
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
142
总下载数(次)
0
总被引数(次)
0
论文1v1指导