基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In this paper, we present machine learning algorithms and systems for similar video retrieval. Here, the query is itself a video. For the similarity measurement, exemplars, or representative frames in each video, are extracted by unsupervised learning. For this learning, we chose the order-aware competitive learning. After obtaining a set of exemplars for each video, the similarity is computed. Because the numbers and positions of the exemplars are different in each video, we use a similarity computing method called M-distance, which generalizes existing global and local alignment methods using followers to the exemplars. To represent each frame in the video, this paper emphasizes the Frame Signature of the ISO/IEC standard so that the total system, along with its graphical user interface, becomes practical. Experiments on the detection of inserted plagiaristic scenes showed excellent precision-recall curves, with precision values very close to 1. Thus, the proposed system can work as a plagiarism detector for videos. In addition, this method can be regarded as the structuring of unstructured data via numerical labeling by exemplars. Finally, further sophistication of this labeling is discussed.
推荐文章
基于信令寻径式网络的高性能容错VIA设计与实现
VIA
信令寻径式网络
机群计算
并行处理
基于CUDA的蛋白质翻译后修饰鉴定MS-Alignment算法加速研究
蛋白质翻译后修饰鉴定
MS-Alignment
图形处理器
统一计算设备架构
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Similar Video Retrieval via Order-Aware Exemplars and Alignment
来源期刊 信号与信息处理(英文) 学科 工学
关键词 Similar Video RETRIEVAL EXEMPLAR Learning M-Distance Sequence ALIGNMENT Data STRUCTURING
年,卷(期) 2018,(2) 所属期刊栏目
研究方向 页码范围 73-91
页数 19页 分类号 TP39
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Similar
Video
RETRIEVAL
EXEMPLAR
Learning
M-Distance
Sequence
ALIGNMENT
Data
STRUCTURING
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信号与信息处理(英文)
季刊
2159-4465
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
301
总下载数(次)
0
总被引数(次)
0
论文1v1指导