基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了打击假牌、套牌车及以汽车为作案工具的犯罪,且由于传统单一的车型或颜色识别已显得力不从心,因此,提出了改进的多标签深度学习车型与颜色识别模型.该模型利用卷积神经网络自主学习有用特征,利用小卷积核构建深层网络提升模型对复杂函数的表达能力,以全局平均池化取代部分全连接层,减少参数与模型所占空间内存;并利用“单模型多标签”特性将车型与颜色信息融合,使提取到的特征表现力更强.在自建数据集下的实验结果表明,该模型能获得较好的识别结果和较高的准确率,特别是对相同子品牌的不同年款的大规模车型和颜色识别效果更佳,在刑侦稽查时能有效缩小搜索范围并迅速锁定类似目标车辆信息.
推荐文章
基于多标签神经网络的行人属性识别
多标签分类
神经网络
行人属性
深度学习
基于标签相关性的类属属性多标签分类算法
标签相关性
类属属性
多标签学习
基于深度学习的标签缺陷检测系统应用
机器视觉
深度学习
主成分分析法
标签缺陷
人工智能
模式识别
图像分类
铁路车辆RFID标签的改进方案
铁路车号识别系统
铁路车辆电子标签
读写器
耦合
储能
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 改进的多标签深度学习车辆属性识别研究
来源期刊 测控技术 学科 工学
关键词 车型识别 颜色识别 多标签深度学习 卷积神经网络 智能交通系统
年,卷(期) 2018,(2) 所属期刊栏目 技术热点——模式识别与人工智能
研究方向 页码范围 3-6,10
页数 5页 分类号 TP391
字数 4179字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 赵珊 河南理工大学计算机科学与技术学院 44 191 8.0 9.0
2 曲宏山 河南工程学院计算机学院 8 15 3.0 3.0
3 黄强强 河南理工大学计算机科学与技术学院 2 3 1.0 1.0
7 刘相利 河南理工大学计算机科学与技术学院 2 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (42)
共引文献  (52)
参考文献  (11)
节点文献
引证文献  (3)
同被引文献  (4)
二级引证文献  (0)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1968(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(6)
  • 参考文献(0)
  • 二级参考文献(6)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(5)
  • 参考文献(1)
  • 二级参考文献(4)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(3)
  • 参考文献(2)
  • 二级参考文献(1)
2015(3)
  • 参考文献(2)
  • 二级参考文献(1)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
车型识别
颜色识别
多标签深度学习
卷积神经网络
智能交通系统
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
测控技术
月刊
1000-8829
11-1764/TB
大16开
北京2351信箱《测控技术》杂志社
82-533
1980
chi
出版文献量(篇)
8430
总下载数(次)
24
总被引数(次)
55628
论文1v1指导