原文服务方: 计算机应用研究       
摘要:
随着深度学习的发展,研究人员开始探索将深度学习应用于行人重识别任务并提出了大量方法,随之也迎来了新的挑战.为系统地了解这一领域的研究现状和发展趋势,首先对行人重识别任务以及存在的问题进行简单介绍;其次,根据训练方式的不同,分别探讨监督学习、半监督学习/弱监督学习以及无监督学习上行人重识别任务的研究进展,并根据现有研究热度介绍生成对抗网络和注意力机制在行人重识别上的应用;之后,列举了该领域中常用的经典数据集,并对比了深度模型在这些经典数据集(Market-1501、CUHK03等)上的表现;最后,对行人重识别领域的未来方向进行了展望.
推荐文章
基于深度学习的行人重识别研究进展
行人重识别
深度学习
计算机视觉
卷积神经网络
行人重识别研究综述
行人重识别
特征表达
度量学习
深度学习
卷积神经网络
数据集
视频监控
基于深度学习的植物识别原理综述
深度学习
植物识别
神经网络
信念网络
网络结构
鲁棒性
基于深度学习的医疗影像识别技术研究综述
医疗影像识别
深度学习
图像增强
图像检测
图像分割
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的行人重识别研究综述
来源期刊 计算机应用研究 学科
关键词 行人重识别 监督学习 半监督学习 弱监督学习 无监督学习
年,卷(期) 2020,(11) 所属期刊栏目 综述评论
研究方向 页码范围 3220-3226,3240
页数 8页 分类号 TP391.41
字数 语种 中文
DOI 10.19734/j.issn.1001-3695.2019.09.0514
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (23)
共引文献  (6)
参考文献  (19)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(5)
  • 参考文献(1)
  • 二级参考文献(4)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(6)
  • 参考文献(1)
  • 二级参考文献(5)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(4)
  • 参考文献(1)
  • 二级参考文献(3)
2016(2)
  • 参考文献(1)
  • 二级参考文献(1)
2017(5)
  • 参考文献(5)
  • 二级参考文献(0)
2018(6)
  • 参考文献(6)
  • 二级参考文献(0)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
行人重识别
监督学习
半监督学习
弱监督学习
无监督学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导