基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
多标记学习是一种应用非常广泛的学习范式,其中,一个对象可能同时与多个标记相关联.传统的多标记学习研究多假设训练数据中观察到的标记分布与测试数据的真实标记分布一致.但在实际应用中,训练数据中可能存在一些从未被标注出的新标记.在预测时,不仅希望能够在目标标记集合(已知标记)上取得好的性能,还要求能够检测出样本是否存在新标记.针对这种多标记新标记学习问题,本文提出了一种端到端的多视图多示例多标记学习方法EM3NL.该方法基于卷积神经网络产生多示例包,并通过最小化包上观察标记的错分损失和对新标记预测值排序损失的惩罚以及对多视图预测不一致的惩罚同时学习图像,文本两个视图的特征表示以及已知标记和新标记的预测函数.在大规模图片-文本真实数据集上验证了EM3NL在已知标记学习和新标记检测任务上的有效性.
推荐文章
构建新包空间的多示例学习方法
多示例学习
反向传播算法
粗糙集
K均值聚类
新空间
多标记学习研究综述
多标记学习
机器学习
问题转换
算法改进
评估措施
基于树结构的层次性多示例多标记学习
层次性多示例多标记学习
树结构
G蛋白偶联受体
生物学功能
多示例学习
一种基于案例推理的多agent强化学习方法研究
多agent强化学习
Q学习
策略再用
基于案例的推理
追捕问题
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于多示例多标记学习的新标记学习方法
来源期刊 中国科学(信息科学) 学科
关键词 多标记新标记学习 多示例多标记学习 多视图学习 深度学习
年,卷(期) 2018,(12) 所属期刊栏目 论文
研究方向 页码范围 1670-1680
页数 11页 分类号
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
多标记新标记学习
多示例多标记学习
多视图学习
深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国科学(信息科学)
月刊
1674-7267
11-5846/N
北京东黄城根北街16号
chi
出版文献量(篇)
1697
总下载数(次)
4
论文1v1指导