基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The existence of strongly polynomial algorithm for linear programming (LP) has been widely sought after for decades. Recently, a new approach called Gravity Sliding algorithm [1] has emerged. It is a gradient descending method whereby the descending trajectory slides along the inner surfaces of a polyhedron until it reaches the optimal point. In R3, a water droplet pulled by gravitational force traces the shortest path to descend to the lowest point. As the Gravity Sliding algorithm emulates the water droplet trajectory, it exhibits strongly polynomial behavior in R3. We believe that it could be a strongly polynomial algorithm for linear programming in Rn too. In fact, our algorithm can solve the Klee-Minty deformed cube problem in only two iterations, irrespective of the dimension of the cube. The core of gravity sliding algorithm is how to calculate the projection of the gravity vector g onto the intersection of a group of facets, which is disclosed in the same paper [1]. In this paper, we introduce a more efficient method to compute the gradient projections on complementary facets, and rename it the Sliding Gradient algorithm under the new projection calculation.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 The Sliding Gradient Algorithm for Linear Programming
来源期刊 美国运筹学期刊(英文) 学科 数学
关键词 LINEAR PROGRAMMING MATHEMATICAL PROGRAMMING COMPLEXITY THEORY Optimization
年,卷(期) 2018,(2) 所属期刊栏目
研究方向 页码范围 112-131
页数 20页 分类号 O1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
LINEAR
PROGRAMMING
MATHEMATICAL
PROGRAMMING
COMPLEXITY
THEORY
Optimization
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
美国运筹学期刊(英文)
半月刊
2160-8830
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
329
总下载数(次)
0
总被引数(次)
0
论文1v1指导