基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Collaborative filtering(CF)methods are widely adopted by existing medical recommendation systems,which can help clinicians perform their work by seeking and recommending appropriate medical advice.However,privacy issue arises in this process as sensitive patient private data are collected by the recommendation server.Recently proposed privacy-preserving collaborative filtering methods,using computation-intensive cryptography techniques or data perturbation techniques are not appropriate in medical online service.The aim of this study is to address the privacy issues in the context of neighborhoodbased CF methods by proposing a Privacy Preserving Medical Recommendation(PPMR)algorithm,which can protect patients’treatment information and demographic information during online recommendation process without compromising recommendation accuracy and efficiency.The proposed algorithm includes two privacy preserving operations:Private Neighbor Selection and Neighborhood-based Differential Privacy Recommendation.Private Neighbor Selection is conducted on the basis of the notion of k-anonymity method,meaning that neighbors are privately selected for the target user according to his/her similarities with others.Neighborhood-based Differential Privacy Recommendation and a differential privacy mechanism are introduced in this operation to enhance the performance of recommendation.Our algorithm is evaluated using the real-world hospital EMRs dataset.Experimental results demonstrate that the proposed method achieves stable recommendation accuracy while providing comprehensive privacy for individual patients.
推荐文章
Guizhou Province, China: the birthplace of modern Medical Geology
Coal
Fluorosis
Arsenic poisoning
Selenosis
Health impacts
Environmental health
基于PC-Based的TwinCAT数据接口研究
PC-Bases
TwinCAT 接口
数据传输
同态加密隐私保护数据挖掘方法综述
隐私保护
数据挖掘
同态加密
安全多方计算
界面裂纹的 Cell-Based 光滑有限元法研究
光滑有限元法
界面裂纹
应力强度因子
交互积分
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Reliable Medical Recommendation Based on Privacy-Preserving Collaborative Filtering
来源期刊 计算机、材料和连续体(英文) 学科 数学
关键词 MEDICAL RECOMMENDATION PRIVACY PRESERVING neighborhood-based collaborative filtering differential PRIVACY
年,卷(期) 2018,(7) 所属期刊栏目
研究方向 页码范围 137-149
页数 13页 分类号 O17
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
MEDICAL
RECOMMENDATION
PRIVACY
PRESERVING
neighborhood-based
collaborative
filtering
differential
PRIVACY
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机、材料和连续体(英文)
月刊
1546-2218
江苏省南京市浦口区东大路2号东大科技园A
出版文献量(篇)
346
总下载数(次)
4
总被引数(次)
0
论文1v1指导