基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The United States (U.S.) Gulf Coast is a prominent global energy hub with a set of highly integrated critical energy infrastructure that rivals, if not surpasses, any comparable set of infrastructure anywhere in the world. Past extreme weather events in the region have led to critical energy infrastructure disruptions with national and global implications. Future sea-level rise (SLR), coupled with other natural hazards, will lead to a significant increase in energy infrastructure damage exposure. This research assesses coastal energy infrastructure that is at risk from various fixed SLR outcomes and scenarios. The results indicate that natural gas processing plants that treat and process natural gas before moving it into the interstate natural gas transmission system may be particularly vulnerable to inundation than other forms of critical energy infrastructure. Under certain SLR assumptions, as much as six Bcfd (eight percent of all U.S. natural gas processing capacity) could be inundated. More extreme SLR exposure assumptions result in greater levels of energy infrastructure capacity exposure including as much as 39 percent of all U.S. refining capacity based on current operating levels. This research and its results show that while fossil fuel industries are often referenced as part of the climate change problem, these industries will likely be more than proportionally exposed to the negative impacts of various climate change outcomes relative to other industrial sectors of the U.S. economy. This has important implications for the U.S. and global energy supplies and costs, as well as for the U.S. regional economies reliant on coastal energy infrastructure and its supporting industries.
推荐文章
Elemental characteristics and paleoenvironment reconstruction: a case study of the Triassic lacustri
Trace elements
Occurrence mode
Paleoenvironment
Zhangjiatan oil shale
Yanchang Formation
Ordos Basin
Iron isotope fractionation during fenitization: a case study of carbonatite dykes from Bayan Obo, In
Iron isotopes
Fenitization
Fluid exsolution
Carbonatite
Bayan Obo
Effects of carbon anhydrase on utilization of bicarbonate in microalgae: a case study in Lake Hongfe
Microalgae
Carbonic anhydrase
Stable carbon isotope
Inorganic carbon utilization
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Sea-Level Rise and Coastal Inundation: A Case Study of the Gulf Coast Energy Infrastructure
来源期刊 自然资源(英文) 学科 经济
关键词 GULF COAST Energy INFRASTRUCTURE SEA-LEVEL RISE Climate Change Natural Gas Processing REFINING Power Generation
年,卷(期) 2018,(4) 所属期刊栏目
研究方向 页码范围 150-174
页数 25页 分类号 F4
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
GULF
COAST
Energy
INFRASTRUCTURE
SEA-LEVEL
RISE
Climate
Change
Natural
Gas
Processing
REFINING
Power
Generation
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
自然资源(英文)
月刊
2158-706X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
78
总下载数(次)
0
总被引数(次)
0
论文1v1指导