作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Google’s AlphaGo represents the impressive performance of deep learning and the backbone of deep learning is the workhorse of highly versatile neural networks. Each network is made up of layers of interconnected neurons and the nonlinear activation function inside each neuron is one of the key factors that account for the unprecedented achievement of deep learning. Learning how to create quantum neural networks has been a long time pursuit since 1990’s from many researchers, unfortunately without much success. The main challenge is to know how to design a nonlinear activation function inside the quantum neuron, because the laws in quantum mechanics require the operations on quantum neurons be unitary and linear. A recent discovery uses a special quantum circuit technique called repeat-until-success to make a nonlinear activation function inside a quantum neuron, which is the hard part of creating this neuron. However, the activation function used in that work is based on the periodic tangent function. Because of this periodicity, the input to this function has to be restricted to the range of [0, π/2), which is a serious constraint for its applications in real world problems. The function’s periodicity also makes its neurons not suited for being trained with gradient descent as its derivatives oscillate. The purpose of our study is to propose a new nonlinear activation function that is not periodic so it can take any real numbers and its neurons can be trained with efficient gradient descent. Our quantum neuron offers the full benefit as a quantum entity to support superposition, entanglement, interference, while also enjoys the full benefit as a classical entity to take any real numbers as its input and can be trained with gradient descent. The performance of the quantum neurons with our new activation function is analyzed on IBM’s 5Q quantum computer and IBM’s quantum simulator.
推荐文章
基于Neuron芯片的远程数据采集装置的设计
数据采集
神经元输入/输出对象
现场总线
Quantum PLC在水电厂LCU改造中的应用技巧
改造
现地控制单元
Quantum PLC
Modicon984 PLC
对等数据传输
基于COMSOL和NEURON的坐骨神经电刺激模型
有限元
NEURON
坐骨神经
神经建模
神经功能电刺激
Real与Media流媒体技术比较
Real
Media
流媒体
比较
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Towards a Real Quantum Neuron
来源期刊 自然科学期刊(英文) 学科 数学
关键词 QUANTUM COMPUTATION QUANTUM Machine Learning QUANTUM NEURAL Network QUANTUM NEURON
年,卷(期) zrkxqkyw_2018,(3) 所属期刊栏目
研究方向 页码范围 99-109
页数 11页 分类号 O1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
QUANTUM
COMPUTATION
QUANTUM
Machine
Learning
QUANTUM
NEURAL
Network
QUANTUM
NEURON
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
自然科学期刊(英文)
月刊
2150-4091
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
1054
总下载数(次)
0
论文1v1指导