基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In protein sequence classification research, it is popular to convert a variable length sequence of protein into a fixed length numerical vector by using various descriptors, for instance, composition of k-mer composition. Such position-independent descriptors are useful since they are applicable to any length of sequence;however, positional information of subsequence is discarded even though it might have high contribution to classification performance. To solve this problem, we divided the original sequence into some segments, and then calculated the numerical features for them. It enables us to partially introduce positional information (for instance, compositions of serine in anterior and posterior segments of a sequence). Through comprehensive experiments on the number of segments and length of overlapping region, we found our classification approach with sequence segmentation and feature selection is effective to improve the performance. We evaluated our approach on three protein classification problems and achieved significant improvement in all cases which have a dataset with sufficient amino acid in each sequence. This result has shown the great potential of using additional segments in protein sequence classification to solve other sequence problems in bioinformatics.
推荐文章
拟南芥DA1-Related Protein 2基因参与调控植物对盐胁迫的响应
拟南芥
DAR2
盐胁迫
萌发和转绿
离子胁迫
渗透胁迫
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Spatial analysis of carbon storage density of mid-subtropical forests using geostatistics: a case st
Carbon storage density
Geostatistics
Mid-subtropical forests
Spatial autocorrelation
Spatial heterogeneity
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Improving Protein Sequence Classification Performance Using Adjacent and Overlapped Segments on Existing Protein Descriptors
来源期刊 生物医学工程(英文) 学科 医学
关键词 PROTEIN SEQUENCE Classification PROTEIN DESCRIPTOR SEQUENCE Segmentation Feature Selection
年,卷(期) 2018,(6) 所属期刊栏目
研究方向 页码范围 126-143
页数 18页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
PROTEIN
SEQUENCE
Classification
PROTEIN
DESCRIPTOR
SEQUENCE
Segmentation
Feature
Selection
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
生物医学工程(英文)
月刊
1937-6871
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
252
总下载数(次)
1
总被引数(次)
0
论文1v1指导