Multicast-enabled high-speed VCSEL technology for flexible data center networks
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取
摘要:
We experimentally demonstrate the multiple signal modulation on a single class 10G vertical cavity surface emitting laser (VCSEL) carrier at 1 310 nm for next generation multicast-enabled data center networks.A 10 Gbit/s data signal is directly modulated onto a single mode VCSEL carrier.To maximize carrier spectral efficiency,a 2 GHz reference frequency (RF) clock tone is simultaneously modulated on the VCSEL phase attribute.The inherent VCSEL orthogonal polarization bistability with changing bias current is further exploited in transmission of a polarization based pulse per second (PPS) timing clock signal.Therefore,we simultaneously transmit a 10 Gbit/s directly modulated data,2 GHz phase modulated RF and a polarization-based PPS clock signals using a single mode 10 GHz bandwidth VCSEL carrier.It is the first time that a single class 10 G VCSEL carrier is reported to transmit a directly modulated data,phase modulated RF clock and polarization based PPS timing signal simultaneously in a single wavelength.A of G.652 single mode fibre (SMF) transmission over 3.21 km is experimentally attained.A receiver sensitivity of-15.60 dBm is experimentally obtained for the directly modulated 10 Gbit/s data signal.A 3.21-km-long SMF transmission introduces a penalty of 0.23 dB to the data signal.The contribution of a 2 GHz phase modulated RF and a polarization-based PPS clock signal to this penalty is found to be 0.03 dB.An RF single-side band (SSB) phase noise values of-82.36 dBc/Hz and-77.97 dBc/Hz are attained without and with simultaneous directly modulated data and polarization-based PPS clock signals respectively for a 3.21-km-long SMF transmission.This work provides an alternative efficient and cost effective technique for simultaneous high-speed multiple information transmission to different network nodes within a data center network through shared network infrastructure.