基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
高效用项集挖掘已成为关联规则中的一个热点研究问题.一些基于垂直结构的算法已用来挖掘高效用项集,此类算法的主要优点是将项集的事务和效用信息存储到效用列表中.在求一个项集的超集所在事务可以通过对它的子集进行一次交集运算得到.这种算法在稀疏数据集中非常的有效.但在稠密数据集中存在一个问题,即列表中存储的事务太多,在计算用于剪枝的效用上界时,需要耗费大量的存储空间,同时也影响运行速度.并且在现有的算法中,缺乏针对稠密数据集的高效用项集挖掘算法,往往需要设置很高的最小效用阈值,影响算法的运行效率.针对此问题,提出一个新的算法D-HUI(mining High Utility Itemsets using Diffsets)以及一个新的数据结构一项集列表,首次在高效用项集挖掘中引入差集的概念.利用事务的差集求项集的效用上界,减少计算量以及存储空间,从而提高算法的运行效率.实验结果表明,提出的算法在稠密数据集中,执行速度更快,内存消耗更少.
推荐文章
减少候选项集的数据流高效用项集挖掘算法
大数据
数据流
高效用项集
模式挖掘
模式增长
候选模式
多最小效用阈值的频繁高效用项集快速挖掘算法
频繁项集
高效用项集
支持度
多最小效用阈值
改进的频繁和高效用项集挖掘算法
频繁项集
高效用项集
伪投影
事务合并
高效用项集挖掘算法综述
高效用项集
效用挖掘
频繁项集
数据挖掘
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于差集的高效用项集挖掘方法
来源期刊 电子学报 学科 工学
关键词 关联规则 高效用项集 稠密数据集 垂直结构 差集
年,卷(期) 2018,(8) 所属期刊栏目 学术论文
研究方向 页码范围 1804-1814
页数 11页 分类号 TP311
字数 8964字 语种 中文
DOI 10.3969/j.issn.0372-2112.2018.08.002
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李晶 武汉大学计算机学院 92 1000 19.0 28.0
2 黄坤 23 167 7.0 12.0
3 吴玉佳 武汉大学计算机学院 4 10 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (13)
共引文献  (19)
参考文献  (13)
节点文献
引证文献  (2)
同被引文献  (6)
二级引证文献  (0)
2000(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(4)
  • 参考文献(1)
  • 二级参考文献(3)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(3)
  • 参考文献(3)
  • 二级参考文献(0)
2016(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
关联规则
高效用项集
稠密数据集
垂直结构
差集
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子学报
月刊
0372-2112
11-2087/TN
大16开
北京165信箱
2-891
1962
chi
出版文献量(篇)
11181
总下载数(次)
11
总被引数(次)
206555
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导