现有的基于滑动窗口挖掘高效用项集的研究方法存在:候选项集通常数量巨大,需要大量的存储空间及计算候选项集的真实效用是非常耗时的问题.本文提出一种不生成候选项集的挖掘算法HUISW(high utility itemset mining over a siding window),HUISW采用一种新的树结构HUIL-Tree(high utility itemset tee which arranges items ac-cording to lexicographic order)存储滑动窗口中的项集信息,采用效用数据库存储项集在窗口事务中的效用信息,在挖掘过程中HUISW采用模式增长的方法对由HUIL-Tree生成的项集通过其与效用数据库的对应关系,直接计算其在滑动窗口中的效用,整个过程避免了候选项集的生成.在实验中通过由稀疏和稠密数据集模拟的数据流对HUISW进行性能评估,并与同类算法SHU-Growth(siding window based high utility growth)进行比较,实验结果表明HUISW显著优于SHU-Growth,运行时间最快可提升两个数量级.